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A B S T R A C T   

Poly(ethylene terephthalate) (PET) is widely used material in the healthcare due to its mechanical properties 
including resistance to chemicals and abrasion. However, it is susceptible to bacterial attachment and contam-
ination. This study addresses some newly designed model compounds of PET with antimicrobial properties that 
could potentially be incorporated into PET materials. All compounds were synthesized for the first time by la-
beling an integral part of PET with chromophores in the form of esters of cinnamic and ferulic acids. After 
complete structural characterization, the effect of new compounds on microbial growth and communication 
(quorum sensing, QS) was analyzed and further investigated using molecular docking. The obtained results 
indicate that the introduction of chromophores that have one part of cinnamic acid enriched with a methoxy 
functional group in them acts as QS modulators. Moreover, compounds exhibited dose-dependent selectivity 
toward QS signaling pathways and the highest tested concentration of compounds showed Pseudomonas Qui-
nolone Signal (PQS) inhibitory activity suggesting that these compounds have a potential effect on pyocyanin 
production. Docking studies demonstrated that compounds hold binding power to all four QS protein targets 
(LuxP, periplasmatic protein that binds AI-2 inducer and forms a complex able to transduce the autoinducer 
signal, RhIR protein that is a key QS transcriptional regulator that activates the genes involved in the synthesis of 
rhamnolipids and pyocyanin, AbaI protein that has a role in QS signal transduction, and LasR protein which is a 
key QS transcriptional regulator that activates transcription of genes coding for some virulence-associated traits) 
while the highest binding strength is observed with compounds 2 and 6 containing single cinnamic acid frag-
ment, suggesting their further biomedical application.   

1. Introduction 

Bacterial infections represent a major health problem, responsible 
for great expense and mortality [1]. A significant source of bacterial 
infections is contaminated and soiled surfaces of indwelling medical 
devices or common utilities such as sinks, toilets, door handles, clothes, 
curtains, or computer keyboards [1,2]. Most materials in biomedical 
applications are replaced with clear, strong, lightweight, and low-cost 
plastics known as PET [2]. This is one of the most used polymeric ma-
terials in the healthcare sector mainly due to its biocompatibility, me-
chanical strength, and resistance against chemicals [1,3]. Certainly, the 
main disadvantage of PET use in the healthcare sector is its susceptibility 
to bacterial contamination. Possible ways to reduce the impact of PET 
bacterial contamination are the anti-adhesive and biocidal modification 
of its surfaces [1–4]. Anti-adhesive modification implies surface charge 

and energy, hydrophilicity, and surface roughness, while biocidal 
modification may be obtained by attaching antimicrobial compounds to 
the surface to prevent the growth of bacteria. Modification of PET sur-
face can improve its hemocompatibility and anti-bacterial properties [5, 
6]. PET is an inert polymer, without surface reactive functional groups, 
therefore the introduction of reactive functional groups on its surface 
could improve the desirable properties. In recent years, various tech-
niques as hydrolysis, reduction, and glycolysis, have been applied to the 
copolymerization and post-modification of oligomers and polymers [1, 
6–8]. 

In our previous work, we synthesized several compounds that could 
be seen either as PET building blocks or as products of PET degradation 
and assessed their toxicity, and their potential to be used as substrates 
for PET hydrolyzing enzymes [9]. None of the compounds were affecting 
the growth of common human pathogens E. coli and S. aureus even at 
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1000 mg/mL concentrations indicating that compounds do not have any 
microbial growth inhibitory properties and were not toxic. Therefore, in 
this study, to improve the antimicrobial properties of the PET model 
compounds, the labeling of the terephthalic part of PET was achieved 
using parts of cinnamic and ferulic acids as chromophores (Scheme 1). 
Cinnamic acid and hydroxycinnamic acids are ubiquitous and their 
direct extraction from plants and their biotechnological production is 
the subject of many investigations [10], which is the reason for the 
increasing popularity of polymers based on cinnamic acid and its de-
rivatives [11,12]. Also, the polymers synthesized from hydroxy de-
rivatives of cinnamic acid are widely applied in biomedicine, especially 
as drug delivery systems [13]. From a chemical point of view, cinnamic 
acid has two main characteristics important for its use in polymer syn-
thesis: a conjugated double bond that undergoes cis-trans isomerization 
and provides a possibility of creating photoreactive polymers whose 
application is found in biomedicine as drug carriers [13], and the 
presence of hydroxyl and carboxyl groups in its structure enables the 
polycondensation reactions [13,14]. It is generally known that cinnamic 
acid can be used as an additive to food-packaging materials and as a 
savory ingredient in cosmetics and detergents [15–17]. Some studies 
have shown that cinnamic acid and its derivatives find its potential use 
in food-packaging applications by obtaining thin materials with starch 
film, PLA, and PVA, followed by the manifestation of antibacterial ac-
tivity against E. coli and Listeria innocua [18–20]. 

Cinnamic acid derivatives have been reported to have antibacterial, 
antiviral, and antifungal properties, moreover, some of the cinnamic 
acid derivatives have been reported as more effective antimicrobial 
drugs compared to the standard drugs used to treat chronic or infectious 
diseases in vitro [21,22]. Also, it is known that fungal organisms are 
generally more susceptible to cinnamic aldehydes, while bacteria are 
affected by cinnamic acids, esters, and amides [23]. A noteworthy effect 
was observed for the cinnamic derivatives against Mycobacterium 
tuberculosis. The bacteria growth was repeatedly inhibited by micro-
molar concentrations of derivatives containing the cinnamic acid moiety 
[23]. Recently Marina Mingoia et al. reported the synthesis, antimi-
crobial, antibiofilm, and wound-healing properties of novel cinnamic 
acid-based antimicrobials [24]. They demonstrated the antimicrobial 
properties of cinnamic acid-based compounds against Gram-positive 
bacteria (Streptococcus spp.) and antibiofilm activity against Staphylo-
coccus epidermidis and proposed it as a safe wound-healing topical agent 
for the treatment of skin wound infections. 

According to our knowledge, to date, there are no reports on cin-
namic acid use in the synthesis of PET model compounds as antimi-
crobials. Therefore, in this study, cinnamic acid-based PET model 
compounds were synthesized for the first time with the view of incor-
poration into PET polymers, and their bioactivity has been determined 
indicating their ability to inhibit bacterial communication (quorum 
sensing). 

2. Material and methods 

2.1. Materials 

Ethanol (CAS No.: 64-17-5), methanol (CAS No.: 67-56-1), dimethyl 
sulfoxide (DMSO; CAS No.: 67-68-5), deuterated DMSO (CAS No.: 2206- 
27-1), methyl terephthaloyl chloride (CAS No.: 100-20-9), terephthalic 
acid (CAS No.: 100-21-0), hydroxycinnamic acid (CAS No..: 14755-02- 
3), concentrated sulfuric acid (CAS No.: 7664-93-9), anhydrous so-
dium sulfate (CAS No.: 7757-82-6), sodium bicarbonate (CAS No.: 144- 
55-8), pyridine (CAS No.: 110-86-1), potassium hydroxide (CAS No.: 
1310-58-3), dicyclohexylcarbo-diimide (DCC; CAS No.: 538-75-0) and 
4-dimethylaminopyridine (DMAP; CAS No.: 1122-58-3) were obtained 
from Sigma-Aldrich (St. Louis, Missouri, USA). 

2.2. Synthesis of PET derivatives 

All reactions were performed using previously purified reagents and 
solvents following standard purification techniques. The reactions were 
monitored by thin-layer chromatography (TLC), on 0.25 mm plates 
(Merck (60F-254) and 18–34,60 Å, ICN Silica TLC), UV light, solution of 
p-anisaldehyde in ethanol (PAA), as well as 50% sulfuric acid solution 
with subsequent heating of the plate, were used to visualize the spots. 
Chromatographic purifications were performed using dry-flash chro-
matography (silica-gel 10–18, 60 Å, ICN Biomedicals). NMR spectra 
were recorded on a Varian/Agilent instrument (1H NMR at 400 MHz, 13C 
NMR at 100 MHz). Chemical shifts are expressed in ppm (δ), using tet-
ramethyl silane (TMS) as the internal standard, while coupling constants 
(J) are expressed in hertz (Hz). IR spectra were recorded on a NICOLET 
SUMMIT instrument, frequencies are expressed in cm− 1. 

Model compounds 1–6 (Fig. 1.) were synthesized according to the 
general procedures for the preparation of different esters by reaction of 
alcohols with a) acyl chloride in the presence of a base, and b) with 
carboxylic acids in the presence of DCC. Detailed synthetic procedures 
are explained in the supporting material, chemistry part. Briefly, PET 
model compounds 1, 2, 3, and 4 were prepared by reaction of appro-
priate esters with methyl terephthaloyl chloride or terephthaloyl 
dichloride in the presence of a base at room temperature. While, model 
compounds 5 and 6 were obtained by the reaction of the terephthalic 
acid derivative with the hydroxycinnamic and ferulic acid derivatives in 
the presence of carboxyl group activators in the form of DCC (N,N’- 
Dicyclohexylcarbodiimide) and DMAP (4-Dimethylaminopyridine). 

2.3. Antimicrobial tests 

Minimum Inhibitory Concentration (MIC) values of samples were 
determined according to the standard broth micro-dilution assays, 
following the Standards of the European Committee on Antimicrobial 

Scheme 1. Routs of the synthesis of PET model compounds (red = terephthaloyl part of PET, blue = ethylene glycolic part of PET).  
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Susceptibility Testing (v 7.3.1: Method for the determination of broth 
dilution minimum inhibitory concentrations of antifungal agents for 
yeasts) for Candida spp., and according to the standard broth micro- 
dilution assays, recommended by the National Committee for Clinical 
Laboratory Standards (M07-A8) for bacteria. The tested compounds 
were dissolved in DMSO at a concentration of 50 mg/mL. The highest 
concentration used was 250 µg/mL. Candida strain used in this study 
was Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019, 
and bacterial strains included: Staphylococcus aureus ATCC 25923, 
Escherichia coli NCTC 9001, Pseudomonas aeruginosa NCTC 10662. For 
the MIC assessment, the inoculums were 1 × 105 colony-forming units 
(CFU/mL), for Candida species, and for bacteria 5 × 105 colony-forming 
units (CFU/mL). The MIC value was recorded as the lowest concentra-
tion that inhibited the growth after 24 h at 37 ◦C. 

2.4. Quorum sensing inhibition assays 

Chromobacterium violaceum Cv026 violacein inhibition assay. Chro-
mobacterium violaceum Cv026 was used for the assessment of the viola-
cein production controlled by quorum sensing. This strain was 
cultivated overnight at 30 ◦C and 180 rpm. Into semi-solid LB agar (0.3 
%, w/v, 5 mL) 50 µL of an overnight culture of C. violaceum Cv026 was 
seeded and supplemented with N-hexanoyl-l-homoserine lactone 
(Sigma, Germany, CAS Number: 147795-39-9) to a final concentration 
of 5 µM and it was poured over the surface of LB agar plates. After so-
lidification, the sterile discs were placed on the surface of the plates and 
the tested compounds were added in appropriate concentrations (250 
and 500 µg/mL). Petri dishes were incubated at 30 ◦C in an upright 
position overnight. Inhibition of violacein production was defined as the 
presence of blurry white hallows around discs containing active 
compounds. 

Serratia marcescens ATCC 27117 prodigiosin inhibition assay. S. mar-
cescens inoculum was grown in Luria Bertani (LB) broth on a rotary 
shaker at 180 rpm overnight and the next day the culture was diluted 
100-fold in molten semisolid LB agar (0.3 % w/v) and poured over a 
solid LB medium. Cellulose disks containing compounds (250 and 500 
μg/disk) were placed on solidified agar and incubated for 24 h at 30 ◦C. 
Inhibition of prodigiosin synthesis was identified by the absence of red 
color around the disk. 

Pseudomonas QS pathways using biosensor strains. Three Pseudomonas 
aeruginosa biosensor strains were used for this assay, P. aeruginosa PA14- 
R3 (ΔlasI Prsal::lux) [25], PAOJP2/pKD-rhlA (ΔrhlA PrhlA::lux) [26] 
and P. aeruginosa PAO1 ΔpqsA (CTX lux::pqsA) [27]. Biosensor strains 
were cultivated overnight, afterward diluted to OD600 0.045, and incu-
bated with PET compounds in six different concentrations (250 μg/mL, 
125 μg/mL, 62.5 μg/mL, 31.2 μg/mL, 15.6 μg/mL, 7.8 μg/mL) in the 
presence of autoinducers, each specific for its biosensor strain 
(3OC12HSL, C4-HSL, and HHQ respectively) in a final concentration of 
5 µM. Plates were incubated for 4 h, at 37 ◦C on a rotary shaker at 70 

rpm. Cell density (OD600) and bioluminescence (LCPS) were measured 
after incubation using a Tecan Infinite200 multiplate-reader (Tecan 
Group Ltd., Switzerland). Luminescence values were normalized per cell 
density. 

2.5. Molecular docking 

In the docking experiment, the binding of investigated PET model 
compounds to the four most studied QS protein targets were investi-
gated. The structures of LuxP and LasR proteins were obtained from 
Protein Data Bank (PDB ID: 1JX6 [28] and 6MVN [29]), while the 
structures of AbaI and RhlR proteins (not found in PDB) were modeled as 
homology models from Swiss-model repository (https://swissmodel. 
expasy.org/repository/uniprot/B0FLN1 [30] and https://swissmodel. 
expasy.org/repository/uniprot/ P54292 [31]). The validation of the 
modeled protein structures was done by stereochemical examination of 
Ramachandran plots with the PROCHECK [32] program, global Quali-
tative Model Energy Analysis (QMEANDisCo) scoring function [33], and 
Protein Structure Analysis Server (ProSA) [34]. Non-bonded atom-atom 
interactions in the modeled structures (compared to a database of reli-
able high-resolution structures) were verified by the ERRAT [35] pro-
gram from the SAVES server [36]. The results of the validation have 
shown the good overall quality of the modeled protein structures 
(Figures S9-S16), thus, models of Abal and RhlR proteins were included 
in our docking experiment. 

For all investigated proteins, the H++ program [37], based on the 
finite difference Poisson–Boltzmann (FDPB) continuum electrostatics 
method, was used to determine the protonation state of each titratable 
amino acid. Next, protein structures were relaxed by optimizing for 
5000 optimization steps with the program CHARMM using the 
charmm36 force field [38]. Finally, individual atomic Kollman charges 
(total charge: − 7.908 for LuxP, − 1.946 for Abal, − 5.944 for LasR, and 
− 0.929 for RhlR) and standard residue atom types, needed for the 
docking calculations, were added [36,39] to the optimized protein ge-
ometries with the AutoDockTools program [40]. The structures of 
investigated PET model compounds were obtained by fully optimizing 
initial geometries with B3LYP [41,42]method and 6-311G(d,p) basis set 
in the Gaussian09 program package [43]. AutoDockTools [40] program 
was used to add atom types and individual Gasteiger partial charges to 
PET model compound atoms (total charge: − 0.003 for compound 1, 
− 0.003 for compound 2, − 0.002 for compound 3, − 0.002 for compound 
4, − 0.001 for compound 5 and − 0.001 for compound 6) and define 
rotatable bonds (8 for compound 1, 9 for compound 2, 12 for compound 
3, 14 for compound 4, 13 for compound 5 and 14 for compound 6) and 
prepare .pdbqt files for docking experiment. 

The docking experiments were carried out with two different dock-
ing programs: AutoDock 4 [44] and the Auto-Dock Vina program [45], 
using different search algorithms and scoring functions. For ligands, all 
double bonds were kept rigid in Z-conformation, while all single bonds 

Fig. 1. Schematic presentation of six novels synthesized PET model compounds (red = terephthaloyl part of PET, blue = ethylene glycolic part of PET).  
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were set to rotate freely during calculation. The blind docking experi-
ment with the AutoDock4 program was conducted in one large grid box, 
centered at the center of the protein, with a spacing of 0.375 Å between 
individual grid points. The dimensions of the grids were: 51 Å × 58.5 Å 
× 66 Å for LuxP protein; 51 Å × 54 Å × 43.5 Å for Abal protein; 48 Å ×
42 Å × 36 Å for LasR and 45.75 Å × 58.5 Å × 70.5 Å for RhlR protein. 
The 100 runs of Lamarckian Genetic Algorithm with 150 individuals in 
population, 25,000,000 energy evaluations, and 27,000 number of 
generations were employed for each docking run. Every docking run was 
repeated three times and the average binding energy for the best 
docking pose was reported. 

A different blind docking strategy was employed for the docking 
experiment with the AutoDock Vina program. To increase our chances of 
finding the best ligand binding sites, docking was done in a smaller grid 
box which was stepwise moved for 8 Å in one direction at a time until the 
whole surface and volume of the protein was covered. To cover the 
whole surface and volume of LuxP protein a total of 448 small grid boxes 
were constructed and the same number of docking runs were produced 
for every ligand. For Abal protein 294 grid boxes was needed, 252 grid 
boxes for LasR, and 504 grid boxes for RlhR protein. The size of these 
small grid boxes was set to allow for full conformational freedom of the 
ligand. For smaller compounds 1 and 2 the size of the grid box was 26 ×
26 × 26 Å. and for the larger compounds 3, 4, 5, and 6 the size of the grid 
box was 34 × 34 × 34 Å. The exhaustiveness parameter was set to 50 in 
each docking run. This large number of smaller grid boxes docking 
approach has given us a good result in our previous investigations [46, 
47]. Discovery Studio software [48] was used to analyze and visualize 
the results of the docking study. 

3. Results and discussion 

3.1. Chemistry 

In our studies, the synthesis of the desired PET model compounds 
started with a simple esterification reaction of the hydroxycinnamic acid 
under acidic conditions (Scheme 1., compounds A and B) [49]. PET 
model compounds with one chromophore unit were prepared by reac-
tion of the appropriate methyl ester of 4-hydroxycinnamic acid with 
methyl terephthaloyl chloride in the presence of pyridine as a base 
(Scheme 1., compounds 1 and 2), while, on the other side, PET model 
compounds with two chromophore units were obtained by reaction of 
hydroxy esters and terephthaloyl chloride in the presence of triethyl-
amine as a base (Scheme 1., compounds 3 and 4). 

A challenge in the synthesis was the functionalization of the 4-((2- 
(benzyloxy)ethoxy)carbonyl)benzoic acid PET monomer with methyl 
esters of hydroxycinnamic and ferulic acids. The starting material was 
prepared according to the previously described procedure [9]. Model 
compounds 5 and 6 were obtained according to the Steglich procedure 
for the preparation of esters by reaction of carboxylic acids with methyl 
esters of hydroxycinnamic acid A and B in the presence of DCC and 
DMAP (Scheme 2). 

It is of great importance to note that model compounds were pre-
pared and characterized for the first time. Therefore, for all compounds, 
the solubility in solvents of different polarities was tested (Table S1). 
Seven solvents of different polarities were used to test the compound 
solubility: toluene, chloroform, acetonitrile, ethyl acetate, dimethyl 
sulfoxide, methanol, and water. As can be seen from Table S1, all 
compounds showed similar and very good solubility in chloroform, 
except for derivatives of terephthalic acid, 3 and 4, with two chromo-
phores, which shows very poor solubility in all tested solvents. Also, the 
good solubility of most compounds can be observed in dimethyl sulf-
oxide, while water proved to be a poor solvent for all compounds. 
Compound 2 and compound 6 showed the best solubilities in all tested 
solvents, except water. 

3.2. Antimicrobial activity 

Poly(ethylene terephthalate) is powerless against microbial 
contamination, which poses a threat to human health. Thus, endowing 
PET with an anti-adhesion surface, but without releasing germicide, is 
currently still a challenge. To address this issue, a lot of research was 
done on changing PET surfaces [1–4]. 

The antimicrobial activity of cinnamic acid and cinnamaldehyde for 
bacterial growth control was demonstrated [50,51]. Cinnamaldehyde 
was able to inhibit planktonic growth at low concentrations but almost 
all cinnamic acid derivatives affected bacterial growth parameters in 
E. coli, S. aureus, and E. hiraei (doubling time, and lag phase length) [51]. 
Therefore, in our study, we tested compounds for their antifungal and 
antibacterial effects. For the initial biological assessment, we analyzed 
our PET compounds (1–6) in terms of antimicrobial properties against 
C. albicans ATCC 10231, C. parapsilosis ATCC 22019, E. coli NCTC 9001, 
S. aureus ATCC 25923, and P. aeruginosa NCTC 10662. The antimicrobial 
activities of the compounds were determined as their minimal inhibitory 
concentrations (MICs) and reported in (Table S2). None of the tested 
compounds had an impact on the growth of any of the tested strains, i.e., 
MIC-values of over 250 µg/mL were observed. According to the obtained 

Scheme 2. The functionalization of the 4-((2-(benzyloxy)ethoxy)carbonyl)benzoic acid, PET monomer, with methyl esters of hydroxycinnamic acid A and B (red =
terephthaloyl part of PET, blue = ethylene glycolic part of PET). 
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results, we decided to test if our model compounds could modulate 
bacterial intercellular communication by affecting QS pathways. In 
brief, QS is a way of communication between bacteria of the same or 
different species through signaling molecules. QS systems control 
pathogenesis by regulating the expression of virulence determinants 
[52]. Therefore, for the development of antimicrobial therapeutical 
products that deal with bacterial virulence, the initiation of QS in-
hibitors without affecting the growth and survival of pathogenic bac-
teria is of great interest. In this work, initial QS screening was done using 
C. violaceum Cv026 and S. marcescence ATCC 27117 for the inhibition of 
the violacein or prodigiosin production, respectively, which are under 
QS control [53,54]. It was found that the quorum-dependent production 
of violacein and prodigiosin was inhibited to different degrees in the 
presence of the test compounds. Mild to moderate inhibitory activity 
was observed with compound 6 visible like a blurry white halo, with a 
diameter of 1 cm around the disc in a concentration of 250 µg/disc, and 
compound 4 represented light prodigiosin inhibition (Fig. S1). The rest 
of the test compounds 1, 2, 3, and 5, showed less or no activities. What 
can be taken into consideration based on the obtained results is that a 
compound possessing only one methylated cinnamic acid fragment 
(compound 6) has a potential effect on the QS pathway in both tested 
bacteria, which is in line with the results of Jantaruk et al. (2021) 
research [55]. They found that the methyl keto analogue of the corre-
sponding cinnamic acid inhibits QS-controlled violacein production of 
C. violaceum ATCC12472, the inhibitory activity was approximately 
twofold stronger than the activity of the “parent” cinnamic acid. 

To examine in more detail the potential impact of the 1–6 PET model 
compounds on the QS pathway we tried to identify which of the 
signaling pathways were affected. Therefore, we evaluated their ability 
to bind to QS receptors in the presence of exogenously provided auto-
inducers using P. aeruginosa biosensors designed to differentiate QS 
pathways: P. aeruginosa PA14-R3 (ΔlasI Prsal::lux) [25], P. aeruginosa 
PAOJP2/pKD-rhlA (ΔrhlA PrhlA::lux) [26] and P. aeruginosa PAO1 
ΔpqsA (CTX lux::pqsA) [27]. P. aeruginosa is an intensively studied 
bacterium owing to multidrug resistance and biofilm-forming ability 
like a major health problem [56]. The remarkable ability of P. aeruginosa 
to efficiently adhere to surfaces and form long-lasting biofilms promotes 
chronic infectious diseases [56]. 

In the highest tested concentration, 250 μg/mL, only compounds: 2 
and 6 showed inhibition effects on all three biosensors (Table 1), while 
in a lower concentration, just compound 6 showed a significant inhi-
bition effect on the R3 biosensor (data not shown). At the concentration 
of 125 μg/mL R3 biosensor inhibition was 44 % ± 4.5 and at a con-
centration of 62.5 μg/mL R3 inhibition was 23 % ± 3.6 (data not 
shown). These data indicate that compounds exhibited dose-dependent 
selectivity toward QS signaling pathways and the highest tested con-
centration (250 μg/mL) of compounds showed PQS inhibitory activity 
(41–43% compound 2, and 50–52 % compound 6, Table 1.) suggesting 
that these compounds have a potential effect on pyocyanin production, 
too. Also, what can be observed is that the compounds that show a PQS 
inhibitory activity (2 and 6) contain as a chromophore one fragment of 
cinnamic acid with a methoxy group, in comparison to compound 4 that 
possesses two cinnamic acid fragments with a methoxy group, which 
suggests that the size of the molecules has an important influence on its 

antimicrobial activity (Scheme 1, Table 1). Compounds 2 and 6 had a 
five to six times stronger PQS inhibitor activity in comparison to com-
pound 4 (Table 1). These results are consistent with the previously 
published in-silico analysis which revealed that cinnamic acid can act as 
a competitive inhibitor towards the ligand binding domain of the tran-
scriptional activators of the quorum sensing circuit in P. aeruginosa, 
LasR, and RhlR [56,57]. 

3.3. Molecular docking studies 

As we found that compounds 2 and 6 show effect on the QS pathway, 
more precisely, they inhibit the production of pyocyanin, we wanted to 
see if there is any specific interaction of these compounds with the most 
studied QS protein targets: LuxP (periplasmatic protein, that binds AI-2 
inducer and forms a complex able to transduce the autoinducer signal) 
[28], AbaI (role in QS signal transduction) [58], LasR (which is a key QS 
transcriptional regulator that activates transcription of genes coding for 
some virulence-associated traits) [59], and RhlR (a key QS transcrip-
tional regulator that activates the genes involved in the synthesis of 
rhamnolipids and pyocyanin) [59,60], and whether the size of the 
chromophore in the model compounds, as well as its functional groups, 
affect QS. Therefore, we performed molecular docking studies on the 
interactions of these proteins and our compounds, and the results of the 
calculations are shown in Table 2. 

For the smaller PET model compounds 1 and 2, both programs have 
found the highest binding energy with the LasR protein. This binding 
site is located in the autoinducer binding pocket of LasR protein [29] 
(Fig. 2A) and the main protein-ligand interactions include hydrogen 
bond between Arg 61 and the terephthalic carboxyl group, π− π stacking 
interactions between Tyr 64 and cinnamic acid aromatic ring and 
C–H− π interactions between Ala 50, Ala 70, and Val 76 and the ter-
ephthalic aromatic ring (Fig. 2B and C). To compare binding energies 
and docking poses, a redocking experiment [61,62] with LasR non-
cognate autoinducer 3-oxo-N- [(3S)-2-oxotetrahydrofuran-3-yl] 
decanamide, also termed as 3OC10 homoserine lactone (3OC10HSL), 
found in the LasR crystal structure (PDBID: 6MVN [25]) was conducted. 
The results of the redocking experiment (Fig. S2), with the AutoDock4 
program, have predicted a binding energy of − 8.52 kcal/mol for 
3OC10HSL to LasR. This binding energy is lower than predicted for PET 
model compounds 1 and 2 (− 9.61 and − 9.88 kcal.mol, Table 2) indi-
cating the potential of these compounds to act as competitive inhibitors. 
Much larger PET model compounds (3, 4, and 6) cannot fit in small 
autoinducer binding pockets, so the best binding pose for them is located 
at the surface of the LasR protein (Fig. 2A). Compound 5, can just fit in 
the autoinducer binding pocket but in the highly bent conformation 
(Fig. S3) and with a high conformational penalty, significantly lowering 
total binding energy (− 8.7 kcal/mol). This binding pose was only found 
with the AutoDock Vina program (Fig. S4). 

The highest energy binding site for larger PET model compounds (3, 
4, 5, and 6) is found in the inhibitor binding domain of AbaI (Fig. 3A) 

Table 1 
Percent of activity inhibition of P. aeruginosa QS biosensor strains in the presence 
of 250 µg/mL of novel PET derivatives.  

Compound R3 RHL ΔPQS 

1 23 ± 1.3 22 ± 2.1 20 ± 2.1 
2 35 ± 1.5 42 ± 0.1 43 ± 1.7 
3 NA 8.5 ± 0.5 25 ± 0.9 
4 22 ± 4.1 25 ± 1.0 9 ± 3.4 
5 28 ± 7.0 18 ± 2.4 35 ± 4.9 
6 41 ± 0.2 39 ± 2.2 52 ± 2.2 

NA = no activity. 

Table 2 
Interaction of PET model compounds with the QS protein targets, expressed in 
kcal/mol, obtained by molecular docking analyses with AutoDock Vina program 
(upper part) and AutoDock4 program (lower part).  

Compound 1 2 3 4 5 6 
Protein AutoDock Vina 

LuxP − 9.2 − 9.2 − 9.2 − 8.8 − 9.2 − 9.2 
AbaI − 8.5 − 8.4 ¡9.8 ¡9.7 ¡9.6 ¡9.5 
LasR ¡10.1 ¡9.7 − 7.6 − 7.6 − 8.7 − 7.3 
RhlR − 8.8 − 8.8 − 8.4 − 8.6 − 8.8 − 8.7  

AutoDock4 
LuxP − 9.14 − 9.51 − 9.15 − 8.12 − 10.0 − 8.46 
AbaI − 8.98 − 9.27 ¡11.00 ¡11.41 ¡10.12 ¡9.80 
LasR ¡9.61 ¡9.88 − 7.88 − 8.19 − 7.40 − 7.39 
RhlR − 8.44 − 8.21 − 8.57 − 8.30 − 8.51 − 7.77  
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protein with calculated binding energies with AutoDock Vina software 
between − 9.5 and − 9.8 kcal/mol, and between − 11.41 and − 9.80 with 
AutoDock4 software. This binding site is also the target for binding 
potent QS inhibitor erythromycin, as found by a recent docking study 
[30]. Ligand binding in this site is dominated by aromatic–aromatic 
interactions, between Phe 83 and Trp 33 and aromatic rings from 
PET-modeled compounds (Fig. 3B and C). Smaller PET model com-
pounds (1 and 2) will also bind in this binding site but with lower 
binding energy. To verify the validity of the found biding site two 
additional docking experiments on the AbaI protein with N-(3-oxocy-
clohex-1-en-1-yl)octanamide (J8-C8) and S-adenosyl methionine (SAM) 
were conducted. A previous study [63] has shown that J8-C8 can inhibit 
the binding of SAM to the Acyl-homoserine-lactone synthase protein 
TofI. A crystal structure of TofI with J8-C8 bound in the 
inhibitor-binding pocket was deposited in the Protein Data Bank (PDB 

ID:3P2H) and was used as a template for modeling AbaI protein. The 
docking experiment of J8-C8 to AbaI protein helped us identify an 
inhibitor-binding pocket and produced a binding site very similar to that 
found in the crystal structure of TofI, and almost completely overlaps 
with predicted PET model compounds binding site (Fig. 4). The highest 
binding energy of J8-C8 to AbaI was − 7.82 kcal/mol predicted by the 
AutoDock4 program, and was significantly lower than predicted binding 
energies for all PET model compounds (from − 11.41 to − 8.98 kcal/mol, 
Table 2). Finally, docking of SAM (the natural ligand of AbaI and other 
Acyl-homoserine-lactone synthase) to the AbaI protein has shown a 
partial overlap between the inhibitor binding site and SAM binding site. 
More specifically, the methoxy group from ferulic acid in compounds 2, 
4, and 6 overlaps with the amino group from the methionine part of SAM 
(Fig. 4). This overlap can explain the increased inhibitor activity of 
ferulic acid PET derivates, compared to hydroxycinnamic acid PET 

Fig. 2. A) High energy binding poses for PET model compound (stick representations) 1 (red), 2 (green), and 5 (blue) in autoinducer binding pocket of LasR protein. 
Compounds 3 (black), 4 (orange), and 6 (purple) are bound to the surface of the LasR protein. B) 3D and C) 2D interaction diagrams between the highest energy 
binding pose for compound 1 and LasR amino acids. 
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derivates (Table 1). 
Docking studies, with both docking programs [64–70], on binding 

1–6 PET model compounds to LuxP and RhlR proteins, produced two 
discreet binding pockets but with smaller binding energies than for LasR 
and AbaI (Table 2.). The results of these studies are shown in ESI. These 
results support our idea that PET model compounds having a single 
cinnamic acid moiety with a methoxy functional group act as 
quorum-sensing modulators. 

4. Conclusion 

The development of new antimicrobials is a huge challenge, the 
research and development process is time-consuming and expensive, 
and antimicrobial resistance is growing day by day. In the search for new 
pharmacologically active compounds against antimicrobial resistance, 
cinnamic acid-based derivatives are represented as valuable compounds 
with great potential for development into drugs. In this study, we syn-
thesized labeled PET model compounds featuring chromophores in the 
form of cinnamic and ferulic acid derivatives. These compounds were 
subjected to a systematic screening process, including solubility studies, 
biological activity studies, and molecular docking studies, marking the 
first time such investigations were conducted. Even though compounds 
showed no effects on microbial growth, we discovered their potential in 
the inhibition of microbial communication, i.e., quorum-sensing, where 

Fig. 3. A) High energy binding poses for PET model compounds (stick representations) in the ligand binding domain of AbaI protein. Color code: red – compound 1; 
green – compound 2; black – compound 3; orange – compound 4; blue – compound 5; purple – compound 6. B) 3D and C) 2D interaction diagrams between the 
highest energy binding pose for compound 3 and AbaI amino acids. 

Fig. 4. J8-C8 inhibitor (blue) and PET model compound 4 (red) docked in the 
inhibitor binding site of AbaI protein. This binding site partially overlaps with 
the SAM (carbon – green, nitrogen – blue, oxygen – red, sulfur – yellow) 
binding site. 
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it was determined that compounds with one cinnamic acid fragment 
with methoxy group (compounds 2 and 6) have an impact on bacterial 
communication. Further on, molecular docking studies have shown that 
the compounds possess the power of interaction, i.e. binding to all four 
QS protein targets, indicating that molecules with a more complex 
structure (larger molecules 3, 4, 5, 6) favor interaction with the AbaI 
protein, while smaller molecules (1, 2) interact with the LasR protein. 
Moreover, through the molecular docking studies, we found that the 
methoxy group from ferulic acid in compounds 2, 4, and 6 increased the 
inhibitor activity of ferulic acid PET derivates, compared to hydrox-
ycinnamic acid PET derivates. 

Altogether, our data show that the incorporation of cinnamic acid 
into PET polymer are potential candidate to be utilized in a reduction of 
PET bacterial contamination, and further structure modifications would 
be beneficial to endow them with a better antibacterial effect. 
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