

Supporting Information

Regio- and Stereoselective, Intramolecular [2+2] Cycloaddition of Allenes, Promoted by Visible Light Photocatalysis

Milos Jovanovic, Predrag Jovanovic, Gordana Tasic, Milena Simic, Veselin Maslak, Srdjan Rakic, Marko Rodic, Filip Vlahovic, Milos Petkovic,'* and Vladimir Savic'*

Supporting information

Regio- and stereoselective, intramolecular [2+2] cycloaddition of allenes, promoted by visible light photocatalysis

Milos Jovanovic^a, Predrag Jovanovic^a, Gordana Tasic^a, Milena Simic^a, Veselin Maslak^b, Srdjan Rakic^c, Marko Rodic^c, Filip Vlahovic^d, Milos Petkovic^a*, Vladimir Savic^a*

^aUniversity of Belgrade, Faculty of Pharmacy, Department of Organic Chemistry, Vojvode Stepe 450, 11221, Belgrade, Serbia

^bUniversity of Belgrade, Faculty of Chemistry, Department of Organic Chemistry, Studentski Trg 16, 11000, Belgrade,

^cUniversity of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia ^dUniversity of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade

Table of contents

General information	1
Synthetic procedures	2
General procedure A	2
General procedure B	3
General procedure C	14
Preparative scale synthesis of cycloadduct 2b	15
Cyclic voltammetry of compound 1a	22
Crystal structure determination of 2c	23
Computational details	26
Theoretically obtained results	28
Conformational analysis of 1d derivative	29
Z-conformer geometry investigation	30
Optimized geometries for all chemical structures	31
References	58

General information

The cycloaddition reactions were performed in 1-dram borosilicate glass vials, which were irradiated with blue LED light from a distance of 12 cm. Detailed specifications of the blue light source are given below. The NMR spectra were recorded on a Bruker Ascend 400 (400 MHz) spectrometer. Chemical shifts are given in parts per million (δ) downfield from tetramethylsilane as the internal standard. Deuterochloroform was used as a solvent, unless otherwise stated. Mass spectral data were recorded using LTQ Orbitrap XL. IR spectra were recorded on an IR Thermo Scientific NICOLET iS10 (4950) spectrometer. Flash chromatography employed silica gel 60 (230–400 mesh) while thin layer chromatography was carried out using alumina plates with a 0.25 mm silica layer (Kieselgel 60 F254, Merck). Compounds were visualized by staining with potassium permanganate solution. The solvents were purified by distillation before use.

Blue LED light specification:

- Manufacturer Hennessy Lighting Technology Co., Ltd.
- Length 10m, Width 8mm (Figure 1S)
- LED Chip Model: SMD3528,
- Voltage: 12V DC,
- Power 4.8 W,
- Wavelength of 465mm (+/-5nm)

Figure 1S. Experimental setup for cycloaddition reaction.

Synthetic procedures

Scheme 1s

N-benzylpropargylamine (S1) Propargyl bromide (1.5 mL - 80 wt.% solution in toluene, 14 mmol) was slowly added to a solution of benzylamine (7.63 mL, 70 mmol) in toluene 10 mL. The resulting mixture was stirred at room temperature for 18 hours. Reaction mixture was diluted with ether and washed with

saturated NaHCO₃ (3 × 20 mL). The organic phase was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Crude oil was purified by silica gel column chromatography (PE/EtOAc = 3/1) to afford **S1** in 86 % yield as a brown oil (1748 mg, 12.04 mmol). The spectral data are consistent with those reported in the literature.¹

N-Boc-N-benzylpropargylamine (S2) A round-bottom flask containing **S1** (1748 mg, 12.04 mmol) was placed in a sonicator bath. Boc-anhydride (2756 mg, 12.64 mmol) was added dropwise over the course of 15 minutes into the round-bottom flask containing N-benzylpropargylamine. The reaction was completed

after 30 minutes (monitored by TLC). Crude mixture was purified by silica gel column chromatography (PE/Et₂O = 8/2) to afford **S2** in 90 % yield as a white amorphous solid (2656 mg, 10.84 mmol). The spectral data are consistent with those reported in the literature.²

General procedure A

To a stirred solution of desired propargyl amide (1 equiv.) in dioxane (20 mL) under nitrogen atmosphere, paraformaldehyde (0.5 equiv), copper(I) iodide (2.5 equiv.) and diisopropylamine (DIPA) (2 equiv) were added. The reaction mixture was stirred at reflux overnight. Reaction mixture was thereafter concentrated under reduced pressure. Crude oil was purified by silica gel column chromatography to afford the desired allenamide.³

tert-butyl benzyl(buta-2,3-dienyl)carbamate (S3) The general procedure A was followed using S2 (2656 mg, 10.84 mmol). Purification by silica gel

column chromatography (PE/Et₂O = 8/2) afforded **S3** (2.021 mg, 7.80 mmol) as a white amorphous solid. The spectral data are consistent with those reported in the literature.²

N-benzylbuta-2,3-dien-1-amine (S4) To a stirred solution of **S3** (2.021 mg, 7.80 mmol) in dichloromethane (30 mL), trifluoroacetic acid (8mL, 47 mmol) was added. The reaction mixture was stirred at room temperature for 2h. Reaction mixture was thereafter washed with saturated NaHCO₃ solution (3 x

20 mL). The organic phase was dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure to afford **S4** in 90 % yield as a brown oil (1116 mg, 7.02 mmol). The spectral data are consistent with those reported in the literature.²

General procedure B

To a stirred solution of desired cinnamic acid (1 equiv) in anhydrous dichloromethane (2 M), under nitrogen atmosphere, EDCI (1.2 equiv), and DMAP (1.2 equiv) were added. The resulting mixture was stirred at room temperature for 5 minutes before adding desired amine (1.2 equiv). The mixture was thereafter stirred overnight at room temperature. Reaction mixture was thereafter concentrated under reduced pressure. Crude oil was purified by silica gel column chromatography (PE/Et₂O) to afford desired amide.

N-hexylcinnamamide (S5) To a stirred solution of hexylamine (203.7 mg, 2.02 mmol) in DMF (10 mL) potassium carbonate (139.2 mg, 1.01 mmol) and propargyl-bromide (80% solution in toluene) (47.7 μ L, 0.5 mmol) were added. The reaction mixture was

stirred overnight at room temperature. Reaction mixture was thereafter diluted with diethyl-ether (30 mL) and washed with water (4 x 20 mL). The organic phase was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Crude oil was purified by silica gel column chromatography (PE/EtOAc = 4/1) to afford **S5** in 92 % yield as a brown oil (63.9 mg, 0.46 mmol). The spectral data are

consistent with those reported in the literature. The spectral data are consistent with those reported in the literature.⁴

N-hexyl-N-(prop-2-ynyl)cinnamamide (S6) The general procedure B was followed using cinnamic acid (50 mg, 0.38 mmol) and **S5** (56.4 mg, 0.41 mmol). Purification by silica gel column chromatography ($PE/Et_2O = 1/1$) afforded **S6** (90.1 mg, 0.34 mmol) as a brown oil in a 89% yield as a mixture of rotamers (66:34).

¹H NMR (400 MHz, CDCl₃) δ 7.72 (t, *J* = 15.7 Hz, 1H_{both rotamers}), 7.52 (d, *J* = 5.5 Hz, 2H_{both rotamers}), 7.43 – 7.32 (m, 3H_{both rotamers}), 6.92 (d, *J* = 15.2 Hz, 1H_{minor}), 6.82 (d, *J* = 15.3 Hz, 1H_{major}), 4.33 (s, 2H_{major}), 4.16 (s, 1H_{minor}), 3.55 (t, *J* = 7.3 Hz, 2H_{both rotamers}), 2.34 (s, 1H_{minor}), 2.22 (s, 1H_{major}), 1.77 – 1.65 (m, 2H_{both rotamers}), 1.40 – 1.30 (m, 6H_{both rotamers}), 0.97 – 0.85 (m, 3H_{both rotamers}).

 13 C NMR (101 MHz, CDCl₃) δ 166.19, 143.39, 135.30, 129.70, 128.83, 127.86, 117.65, 117.05, 82.79, 79.32, 72.77, 71.57, 47.50, 47.17, 40.91, 37.83, 35.18, 33.86, 31.49, 29.16, 28.48, 27.67, 26.47, 23.87, 22.57, 20.82, 20.59, 17.50, 17.30, 14.65, 14.00, 7.93.

N-(buta-2,3-dienyl)-N-hexylcinnamamide (1a) The general procedure A was followed using propargyl amide **S6** (50 mg, 0.19 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/1) afforded **1a** (38.9 mg, 0.13 mmol) as a brown oil in a 72% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 15.3, 11.1 Hz, 1H), 7.52 (d, *J* = 6.3 Hz, 2H), 7.37 (d, *J* = 4.9 Hz, 3H), 6.84 (dd, *J* = 15.4, 6.1 Hz, 1H), 5.30 – 5.14 (m, 1H), 4.93 – 4.76 (m, 2H), 4.11 – 4.01 (m, 2H), 3.48 – 3.39 (m, 2H), 1.74 – 1.50 (m, 4H), 1.38-1.25 (m, 6H), 0.97 – 0.82 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 209.33, 208.65, 166.52, 166.21, 142.75, 142.36, 135.45, 129.56, 129.48, 128.79, 128.31, 127.80, 126.85, 118.06, 117.51, 87.84, 86.88, 77.82, 76.11, 47.69, 47.15, 46.70, 45.40, 40.91, 31.66, 31.50, 29.44, 27.88, 26.75, 26.55, 23.87, 22.59, 20.82, 17.51, 17.31, 14.66, 14.05, 14.00.

N-benzyl-N-(buta-2,3-dienyl)cinnamamide (1b) The general procedure B was followed using cinnamic acid (300 mg, 2.03 mmol) and **S4**. Purification by silica gel column chromatography ($PE/Et_2O = 1/1$) afforded **1b** (476.8 mg, 1.65 mmol) as a pale yellow oil in a 81% yield as a mixture of rotamers (56:44).

¹H NMR (400 MHz, CDCl₃) δ 7.82-7.74 (m, 1H_{both rotamers}), 7.58-7.51 (m, 1H_{both rotamers}), 7.47-7.42 (m, 1H_{both rotamers}), 7.40-7.25 (m, 8H_{both rotamers}), 6.91 (d, *J* = 15.4 Hz, 1H_{major}), 6.82 (d, *J* = 15.4 Hz, 1H_{minor}), 5.30 – 5.18 (m, 1H_{minor}), 5.18 – 5.07 (m, 1H_{major}), 4.90 – 4.76 (m, 2H_{both rotamers}), 4.71 (d, *J* = 9.8 Hz, 2H_{both rotamers}), 4.14-4.09 (m, 2H_{minor}), 4.04 – 3.93 (m, 2H_{major}).

¹³C NMR (101 MHz, CDCl₃) δ 209.55, 208.73, 166.89, 143.50, 143.14, 137.55, 136.99, 135.39, 135.22, 129.66, 128.94, 128.81, 128.66, 128.59, 128.43, 128.36, 128.04, 127.87, 127.68, 127.43, 126.84, 126.65, 126.37, 117.62, 117.43, 87.26, 86.38, 77.80, 76.24, 50.54, 49.38, 45.64, 45.02.

N-(prop-2-ynyl)benzenamine (S9) To a stirred solution of aniline (938 mg, 10.08 mmol) in DMF (10 mL) potassium carbonate (695.8 mg, 5.04 mmol) and propargyl-bromide (80% solution in toluene) (239 μ L, 2.52 mmol) were added. The reaction mixture was stirred overnight at room temperature. Reaction mixture was

thereafter diluted with diethyl-ether (30 mL) and washed with water (4 x 20 mL). The organic phase was

dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. Crude oil was purified by silica gel column chromatography (PE/Et₂O = 1/3) to afford **S9** in 52 % yield as a yellow oil (171.7 mg, 1.31 mmol). The spectral data are consistent with those reported in the literature.⁵

N-phenyl-N-(prop-2-ynyl)cinnamamide (S10) The general procedure B was followed using cinnamic acid (161 mg, 1.09 mmol) and **S9** (171.0 mg, 1.30 mmol). Purification by silica gel column chromatography ($PE/Et_2O = 1/1$) afforded **S10** (173.5 mg, 0.66 mmol) as a brown oil in a 61% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 15.5 Hz, 1H), 7.45 (dt, J = 6.9, 4.4 Hz, 3H), 7.35 – 7.27 (m, 7H), 6.30 (d, J = 15.5 Hz, 1H), 4.61 (d, J = 2.4 Hz, 2H), 2.23 (t, J = 2.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 165.71, 142.89, 141.44, 135.03, 129.71, 129.66, 128.70, 128.33, 128.31, 127.94, 118.17, 85.41, 82.84, 79.09, 72.13, 38.82.

N-(buta-2,3-dienyl)-N-phenylcinnamamide (1e) The general procedure A was followed using propargyl amide **S9** (150 mg, 0.57 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/1) afforded **1e** (91.2 mg, 0.35 mmol) as a yellow oil in a 62% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 15.5 Hz, 1H), 7.46 – 7.22 (m, 10H), 6.32 (d, J = 15.5 Hz, 1H), 5.30 (p, J = 6.6 Hz, 1H), 4.75 – 4.67 (m, 2H), 4.47 – 4.41 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 209.44, 165.75, 142.12, 142.08, 135.19, 129.54, 129.49, 128.67, 128.29, 127.87, 127.79, 118.85, 86.55, 76.27, 48.68.

Scheme 3s

N-(prop-2-ynyl)cinnamamide (S11) The general procedure B was followed using cinnamic acid (250 mg, 1.69 mmol) and propargyl amine (153.4 μ L, 1.86 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/3) afforded **S11** (256.6 mg, 1.39 mmol) as a brown oil in a 82% yield.⁶

(*E*)-3-(3-nitrophenyl)-*N*-(prop-2-ynyl)acrylamide (S11b) The general procedure B was followed using *m*-nitrocinnamic acid (520 mg, 2.69 mmol) and propargyl amine (188.0 μ L, 2.96 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/3) afforded S11b (420.6 mg, 1.83 mmol) as a brown oil in a 70% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 8.22 (d, *J* = 8.3 Hz, 1H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.72 (d, *J* = 15.6 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 1H), 6.52 (d, *J* = 15.6 Hz, 1H), 5.84 (s, 1H), 4.22 (dd, *J* = 5.2, 2.5 Hz, 2H), 2.29 (s, 1H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 164.39, 164.20, 139.43, 136.38, 133.97, 129.98, 124.22, 122.66, 121.81, 79.04, 72.12, 29.62.

(*E*)-tert-butyl cinnamoyl(prop-2-ynyl)carbamate (S12) To a stirred solution of S11 (150 mg, 0.82 mmol) in anhydrous dichloromethane (10 mL), under nitrogen atmosphere, Boc_2O (353.5 mg, 1.62 mmol), DMAP (90.8 mg, 0.81 mmol) and Et_3N (112.8 μ L, 0.81 mmol) were added. The mixture was thereafter stirred overnight at room temperature. Upon completion the reaction mixture

was concentrated under reduced pressure. Crude oil was purified by silica gel column chromatography ($PE/Et_2O = 2/1$) to afford **S12** (208.2 mg, 0.5986 mmol) as a white amorphous solid in a 73 % yield.

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 15.6 Hz, 1H), 7.63 – 7.50 (m, 3H), 7.37 (dd, J = 5.0, 1.8 Hz, 3H), 4.54 (d, J = 2.3 Hz, 2H), 2.17 (t, J = 2.3 Hz, 1H), 1.58 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 167.82, 152.31, 144.20, 135.04, 130.09, 128.81, 128.26, 120.78, 84.01, 79.60, 70.28, 34.08, 28.07.

(*E*)-tert-butyl buta-2,3-dienyl(cinnamoyl)carbamate (1d) The general procedure A was followed using the correspondent propargyl amide (100 mg, 0.54 mmol). Purification by silica gel column chromatography ($PE/Et_2O = 2/1$) afforded 1d (111.4 mg, 0.37 mmol) as a white amorphous solid in a 69% yield.

¹H NMR (400 MHz, $CDCl_3$) δ 7.70 (d, J = 15.6 Hz, 1H), 7.58-7.53 (m, 2H), 7.50 (d, J = 15.6 Hz, 1H), 7.40 – 7.33 (m, 3H), 5.26 (p, J = 6.4 Hz, 1H), 4.84 – 4.73 (m, 2H), 4.37 (dt, J = 5.9, 2.8 Hz, 2H), 1.55 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 208.84, 168.43, 153.05, 143.33, 135.19, 129.91, 128.77, 128.19, 121.35, 87.45, 83.20, 76.81, 43.09, 28.10.

N-acetyl-N-(prop-2-ynyl)cinnamamide (S13) To a stirred solution of **S11** (300 mg, 1.62 mmol) in anhydrous dichloromethane (10 mL), under nitrogen atmosphere, Ac₂O (306.3 μ L, 3.24 mmol), DMAP (181.6 mg, 1.62 mmol) and Et₃N (225.6 μ L, 1.62 mmol) were added. The mixture was thereafter stirred overnight at room temperature. Upon completion the reaction mixture was

concentrated under reduced pressure. Crude oil was purified by silica gel column chromatography ($PE/Et_2O = 1/1$) to afford **S13** (205.9 mg, 0.91 mmol) as a white amorphous solid in a 56 % yield.

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 15.5 Hz, 1H), 7.58 (s, 2H), 7.41 (s, 3H), 7.21 (d, *J* = 15.5 Hz, 1H), 4.57 (s, 2H), 2.54 (s, 3H), 2.31 (d, *J* = 1.1 Hz, 1H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 172.48, 168.28, 146.08, 134.50, 130.69, 128.98, 128.45, 119.57, 78.82, 72.14, 33.85, 26.10.

(*E*)-N-acetyl-3-(3-nitrophenyl)-N-(prop-2-ynyl)acrylamide (S13b) The same procedure as for the synthesis of S13b was used. Starting from (230 mg, 1 mmol) of S11b, 80 mg of S13b was afforded in a 29% yield as a pale yellow oil. Silica gel column chromatograhy was used for purification of the crude product (PE/Et₂O = 1/1).

¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.25 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.79 (d, *J* = 15.5 Hz, 1H), 7.60 (t, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 15.5 Hz, 1H), 4.60 (d, *J* = 2.3 Hz, 2H), 2.55 (s, 3H), 2.34 (t, *J* = 2.3 Hz, 1H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 172.54, 167.47, 148.74, 142.16, 136.39, 133.89, 130.00, 124.68, 123.24, 122.67, 78.46, 72.49, 34.03, 25.79.

N-acetyl-N-(buta-2,3-dienyl)cinnamamide (1c) The general procedure A was followed using propargyl amide **S13** (100 mg, 0.38 mmol). Purification by silica gel column chromatography ($PE/Et_2O = 1/1$) afforded **1c** (63.19 mg, 0.26 mmol) as a yellow amorphous solid in a 69% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 15.5 Hz, 1H), 7.56 (dd, *J* = 6.1, 2.9 Hz, 2H), 7.43 – 7.37 (m, 3H), 7.11 (d, *J* = 15.5 Hz, 1H), 5.31 (p, *J* = 6.1 Hz, 1H), 4.89 (dt, *J* = 6.4, 3.1 Hz, 2H), 4.40 (dt, *J* = 6.0, 3.1 Hz, 2H), 2.49 (s, 3H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 208.56, 173.24, 168.93, 145.22, 134.69, 130.47, 128.94, 128.30, 120.12, 87.54, 78.00, 42.75, 26.17.

(*E*)-*N*-benzyl-*N*-(buta-2,3-dienyl)-3-(4-hydroxyphenyl)acrylamide (1f) The general procedure A was followed using 4-hydroxycinnamic acid (60 mg, 0.37 mmol) and **S4** (56.4 mg, 0.44 mmol). Purification by silica gel column chromatography ($PE/Et_2O = 1/2$) afforded **1f** (97.6 mg, 0.32 mmol) as a yellow oil in a 86% yield as a mixture of

rotamers (56:44).

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 15.3 Hz, 1H_{both rotamers}), 7.41-7.2 (m, 8H_{both rotamers}), 6.87 (d, *J* = 8.4 Hz, 1H_{major}), 6.82 (d, *J* = 8.3 Hz, 1H_{minor}), 6.74 (d, *J* = 15.4 Hz, 1H_{major}), 6.66 (d, *J* = 15.3 Hz, 1H_{minor}), 5.28 – 5.17 (m, 1H_{minor}), 5.16 – 5.07 (m, 1H_{major}), 4.89 – 4.81 (m, 2H_{major}), 4.80 – 4.75 (m, 2H_{minor}), 4.71 (d, *J* = 13.0 Hz, 2H_{both rotamers}), 4.16 – 4.05 (m, 2H_{minor}), 4.05-3.93 (m, 2H_{major}).

¹³C NMR (101 MHz, CDCl₃) δ 209.53, 208.75, 167.87, 158.40, 144.14, 143.76, 137.31, 136.77, 129.73, 128.97, 128.62, 128.35, 127.97, 127.73, 127.48, 127.25, 126.66, 116.01, 115.35, 114.11, 113.87, 87.07, 86.28, 82.93, 77.84, 76.38, 50.67, 49.53, 45.77, 45.19, 40.88, 33.85, 28.46, 23.85, 22.62, 20.81, 17.50, 17.30, 14.65, 7.92.

(E)-N-benzyl-N-(buta-2,3-dienyl)-3-(2-methoxyphenyl)acrylamide (1g) The general procedure A was followed using 2-methoxycinnamic acid (66 mg, 0.37 mmol) and S4 (74,4 mg, 0.44 mmol) Purification by silica gel column chromatography ($PE/Et_2O = 1/1$) afforded 1g (76.7 mg, 0.24

mmol) as a yellow oil in a 65% yield as a mixture of rotamers (44:56).

¹H NMR (400 MHz, CDCl₃) δ 8.08 – 7.95 (m, 1H_{both rotamers}), 7.50 (d, *J* = 7.5 Hz, 1H_{major}), 7.41 – 7.22 (m, 6H_{both rotamers}), 7.06 – 6.84 (m, 3H_{both rotamers}), 5.30 – 5.19 (m, 1H_{minor}), 5.18 – 5.08 (m, 1H_{major}), 4.88 – 4.79 (m, 2H_{major}), 4.77 (d, *J* = 6.2 Hz, 2H_{minor}), 4.72 (s, 2H_{major}), 4.69 (s, 2H_{minor}), 4.16 – 4.07 (m, 2H_{minor}), 4.02 – 3.93 (m, 2H_{major}), 3.87 (s, 3H_{major}), 3.77 (s, 3H_{minor}).

¹³C NMR (101 MHz, CDCl₃) δ 209.57, 208.72, 167.50, 158.30, 139.15, 138.73, 130.73, 129.36, 129.03, 128.84, 128.53, 128.46, 127.34, 126.69, 120.61, 118.45, 111.15, 87.22, 86.47, 82.72, 77.64, 76.13, 55.47, 50.54, 49.22, 45.62, 45.07, 40.91, 23.87, 20.82, 17.50, 17.30, 14.66, 7.93.

(*E*)-*N*-benzyl-*N*-(buta-2,3-dienyl)-3-(3-methoxyphenyl)acrylamide (1h) The general procedure A was followed using 3methoxycinnamic acid (132 mg, 0.74 mmol) and S4 (112.6 mg, 0.88 mmol). Purification by silica gel column chromatography

(PE/Et₂O = 1/1) afforded **1h** (165.2 mg, 0.52 mmol) as a brown oil in a 70% yield as a mixture of rotamers (43:57).

¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.70 (m, 1H_{both rotamers}), 7.41 – 7.21 (m, 6H_{both rotamers}), 7.14 (d, *J* = 7.5 Hz, 1H_{major}), 7.07 – 7.02 (m, 1H_{both rotamers}), 6.98 – 6.85(m, 2H_{both rotamers}), 6.80 (d, *J* = 15.4 Hz, 1H_{minor}), 5.22 (dd, *J* = 13.1, 6.5 Hz, 1H_{minor}), 5.16 – 5.07 (m, 1H_{major}), 4.90 – 4.81 (m, 2H_{major}), 4.81 – 4.75 (m, 2H_{minor}), 4.73 – 4.68 (m, 2H_{both rotamers}), 4.17 – 4.04 (m, 2H_{minor}), 4.03 – 3.94 (m, 2H_{major}), 3.83 (s, 3H_{major}), 3.79 (s, 3H_{minor}).

¹³C NMR (101 MHz, CDCl₃) δ 209.55, 208.74, 166.82, 159.88, 143.36, 143.02, 137.53, 136.79, 136.63, 129.81, 128.95, 128.59, 128.43, 127.70, 127.44, 126.65, 120.47, 117.95, 117.78, 115.12, 113.27, 87.25, 86.37, 77.81, 76.26, 55.30, 50.55, 49.37, 45.64, 45.03.

(*E*)-N-benzyl-*N*-(buta-2,3-dienyl)-3-(4-methoxyphenyl)acrylamide (1i) The general procedure A was followed using 4methoxycinnamic acid (66 mg, 0.37 mmol) and **S4** (56.4 mg, 0.44 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/1) afforded **1i** (93.2 mg, 0.29 mmol) as a yellow in a 79% yield

as a mixture of rotamers (54:46).

¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 15.2 Hz, 1H_{both rotamers}), 7.53 – 7.27 (m, 1H_{both rotamers}), 7.43 – 7.27 (m, 6H_{both rotamers}) 6.88 (dd, *J* = 20.4, 8.3 Hz, 2H_{both rotamers}), 6.78 (d, *J* = 15.4 Hz, 1H_{major}), 6.69 (d, *J* = 15.2 Hz, 1H_{minor}), 5.29 – 5.17 (m, 1H_{minor}), 5.17 – 5.07 (m, 1H_{major}), 4.84 – 4.72 (m, 2H_{both rotamers}), 4.71 (d, *J* = 10.6 Hz, 2H_{both rotamers}), 4.14 – 4.06 (m, 2H_{minor}), 4.03 – 3.95 (m, 2H_{major}) 3.87 – 3.78 (m, 3H_{both rotamers}).

 ^{13}C NMR (101 MHz, CDCl_3) δ 208.75, 167.17, 160.92, 142.85, 129.45, 128.91, 128.56, 128.42, 127.37, 126.66, 115.10, 114.25, 87.29, 86.47, 55.35, 50.49, 49.33, 45.63, 45.01.

(*E*)-*N*-benzyl-*N*-(buta-2,3-dienyl)-3-(2,6-dimethoxyphenyl)acrylamide (1j) The general procedure A was followed using 2,6-dimethoxycinnamic acid (68.6 mg, 0.33 mmol) and **S4** (63.6 mg, 0.40 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/1) afforded **1j** (70.0 mg, 0.20 mmol) as a pale yellow oil in a 60% yield as a mixture of rotamers

(52:48).

¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, *J* = 15.6, 10.2 Hz, 1H_{both rotamers}), 7.47 - 7.13 (m, 8H_{both rotamers}), 6.55 (d, *J* = 8.3 Hz, 2H_{major}), 6.49 (d, *J* = 8.3 Hz, 2H_{minor}), 5.28 - 5,18 (m, 1H_{minor}), 5.19 - 5.09 (m, 1H_{major}), 4.86 - 4.79 (m, 2H_{major}), 4.76 (d, *J* = 6.0 Hz, 2H_{minor}), 4.72 (s, 2H_{major}), 4.67 (s, 2H_{minor}), 4.13 (d, *J* = 5.8 Hz, 2H_{minor}), 3.97 (s, 2H_{major}), 3.85 (s, 3H_{both rotamers}), 3.72 (s, 3H_{both rotamers}).

 ^{13}C NMR (101 MHz, CDCl₃) δ 209.56, 208.72, 168.45, 159.74, 133.79, 130.39, 128.71, 128.46, 127.35, 126.75, 120.48, 103.78, 87.23, 55.76, 55.62, 50.52, 49.04, 45.60.

(*E*)-*N*-benzyl-*N*-(buta-2,3-dienyl)-3-(4-chlorophenyl)acrylamide (1k) The general procedure A was followed using 4-chlorocinnamic acid (67 mg, 0.37 mmol) and **S4** (56.4 mg, 0.44 mmol). Purification by silica gel column chromatography ($PE/Et_2O = 1/1$) afforded **1k** (67.8

mg, 0.21 mmol) as a yellow oil in a 56% yield as a mixture of rotamers (43:57).

¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 15.4, 6.8 Hz, 1H_{both rotamers}), 7.46 (d, *J* = 8.3 Hz, 1H_{both rotamers}), 7.42 – 7.22 (m, 8H_{both rotamers}), 6.87 (d, *J* = 15.4 Hz, 1H_{major}), 6.78 (d, *J* = 15.4 Hz, 1H_{minor}), 5.23 (p, *J* = 6.4 Hz, 1H_{minor}), 5.16 – 5.07 (m, 1H_{major}), 4.88 – 4.82 (m, 2H_{major}), 4.82 – 4.75 (m, 2H_{minor}), 4.72 (s, 1H_{major}), 4.69 (s, 1H_{minor}), 4.16 – 4.04 (m, 2H_{minor}), 4.04 – 3.93 (m, 2H_{major}).

¹³C NMR (101 MHz, CDCl₃) δ 209.53, 208.69, 166.61, 142.12, 141.74, 137.42, 135.48, 133.84, 129.03, 128.60, 128.41, 127.74, 127.48, 126.58, 118.15, 117.94, 87.23, 86.30, 77.88, 76.32, 50.54, 49.41, 45.61, 45.07.

(*E*)-*N*-benzyl-*N*-(buta-2,3-dienyl)-3-(2-chlorophenyl)acrylamide (11) The general procedure A was followed using 2-chlorocinnamic acid (67 mg, 0.37 mmol) and **S4** (56.4 mg, 0.44 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/1) afforded **1**I (96.9 mg, 0.30

mmol) as a yellow oil in a 81% yield as a mixture of rotamers (52:48).

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 15.4 Hz, 1H_{both rotamers}), 7.63 – 7.57 (m, 1H_{major}), 7.48 – 7.17 (m, 9H_{both rotamers}), 6.90 (d, *J* = 15.5 Hz, 1H_{major}), 6.81 (d, *J* = 15.4 Hz, 1H_{minor}), 5.33 – 5.17 (m, 1H_{minor}), 5.17 – 5.05 (m, 1H_{major}), 4.89 – 4.83 (m, 2H_{major}), 4.82 – 4.75 (m, H), 4.72 (s, 2H_{major}), 4.70 (s, 2H_{minor}), 4.15 – 4.08 (m, 2H_{minor}), 4.02 – 3.94 (m, 2H_{major}).

¹³C NMR (101 MHz, CDCl₃) δ 209.58, 208.68, 166.52, 139.36, 138.97, 137.43, 134.78, 133.78, 130.36, 130.21, 128.96, 128.61, 128.50, 127.71, 127.49, 126.90, 126.62, 120.73, 120.53, 87.25, 86.29, 77.98, 76.28, 50.61, 49.35, 45.61, 45.06.

(*E*)-*N*-benzyl-*N*-(buta-2,3-dienyl)-3-(2-nitrophenyl)acrylamide (1m) The general procedure A was followed using 2-nitrocinnamic acid (96.5 mg, 0.5 mmol) and **S4** (96.0 mg, 0.6 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/2) afforded **1m** (106.9 mg, 0.32 mmol) as a

yellow oil in a 64% yield as a mixture of rotamers (53:47).

¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 15.3 Hz, 1H_{both rotamers}), 8.00 (t, J = 8.7 Hz, 1H_{both rotamers}), 7.65 – 7.60 (m, 1H_{both rotamers}), 7.58 – 7.43 (m, 2H_{both rotamers}), 7.41 – 7.26 (m, 5H_{both rotamers}), 6.78 (d, J = 15.3 Hz, 1H_{major}), 6.70 (d, J = 15.3 Hz, 1H_{minor}), 5.28 – 5.18 (m, 1H_{minor}), 5.18 – 5.07 (m, 1H_{major}), 4.91 – 4.84 (m, 2H_{major}), 4.82 – 4.77 (m, 2H_{minor}), 4.72 (s, 2H_{major}), 4.70 (s, 2H_{minor}), 4.15 – 4.09 (m, 2H_{minor}), 4.02 – 3.94 (m, 2H_{major}).

¹³C NMR (101 MHz, CDCl₃) δ 209.58, 208.62, 166.01, 148.39, 138.49, 137.97, 137.21, 136.69, 133.29, 131.71, 129.69, 129.23, 128.98, 128.63, 128.54, 127.76, 127.55, 126.60, 124.80, 123.28, 123.09, 87.25, 86.16, 78.16, 76.39, 50.65, 49.29, 45.53, 44.99.

(E)-N-benzyl-N-(buta-2,3-dienyl)-3-(3-nitrophenyl)acrylamide (1n) The general procedure A was followed using 3-nitrocinnamic acid (77.2 mg, 0.4 mmol) and S4 (76.8 mg, 0.48 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/2) afforded 1n (93.5 mg, 0.28 mmol) as a yellow oil in a 70% yield as a mixture of

rotamers 40:60.

¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H_{major}), 8.27 (s, 1H_{minor}), 8.24 - 8.15 (m, 1H_{both rotamers}), 7.85 - 7.69 (m, 2H_{both rotamers}), 7.61 - 7.49 (m, 1H_{both rotamers}), 7.42-7.36 (m, 1H_{both rotamers}), 7.35-7.23 (m, XXH), 7.05 (d, *J* = 15.4 Hz, 1H_{major}), 6.93 (d, *J* = 15.4 Hz, 1H_{minor}), 5.29 - 5.19 (m, 1H_{minor}), 5.15-5.09 (m, 1H_{major}), 4.94 - 4.85 (m, 2H_{major}), 4.84 - 4.77 (m, 2H_{minor}), 4.75-4.70 (m, 2H_{both rotamers}), 4.17 - 4.10 (m, 2H_{minor}), 4.04 - 3.98 (m, 2H_{major}).

¹³C NMR (101 MHz, CDCl₃) δ 209.55, 208.72, 166.03, 148.72, 140.68, 140.30, 137.20, 137.13, 136.97, 136.68, 134.13, 133.83, 129.92, 129.82, 129.07, 128.67, 128.43, 127.88, 127.60, 126.61, 123.96, 121.92, 121.62, 120.83, 120.61, 87.28, 86.18, 78.07, 50.69, 49.63, 45.80, 45.19.

(*E*)-*N*-acetyl-*N*-(buta-2,3-dienyl)-3-(3-nitrophenyl)acrylamide (10) The general procedure A was followed using propargyl amide **S13b** (12 mg, 0.04 mmol). Purification by silica gel column chromatography ($PE/Et_2O = 1/2$) afforded **1o** (8 mg, 0.03 mmol) as a yellow oil in a 74% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.24 (d, *J* = 8.1 Hz, 1H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.75 (d, *J* = 15.5 Hz, 1H), 7.59 (t, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 15.9 Hz, 1H), 5.33 (p, *J* = 6.1 Hz, 1H), 4.94 (dt, *J* = 6.4, 3.1 Hz, 2H), 4.41 (dt, *J* = 5.9, 3.1 Hz, 2H), 2.48 (d, *J* = 7.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 208.51, 173.31, 168.11, 148.70, 141.40, 136.51, 134.06, 129.98, 124.52, 123.64, 122.29, 87.37, 78.25, 42.98, 25.88.

(E)-N-benzyl-N-(buta-2,3-dien-1-yl)-3-(2-(trifluoromethyl)phenyl) acrylamide (1p) The general procedure A was followed using 2trifluoromethylcinnamic acid (86.4 mg, 0.40 mmol) and **S4** (61.5 mg, 0.48 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/2) afforded **1p** (57.2 mg, 0.16 mmol) as a yellow oil in a 40% yield as a mixture of rotamers (41:59).

¹H NMR (400 MHz, CDCl₃) δ 8.15 - 8.05 (m, 1H_{both rotamers}), 7.72 - 7.61 (m, 1H_{both rotamers} and 1H_{minor}), 7.55 (t, *J* = 7.4 Hz, 1H_{major}), 7.51 - 7.23 (m, 7H_{both rotamers}), 6.84 (d, *J* = 15.3 Hz, 1H_{major}), 6.75 (d, *J* = 15.2 Hz, 1H_{minor}), 5.23 (dd, *J* = 12.5, 6.1 Hz, 1H_{minor}), 5.16 - 5.06 (m, 1H_{major}), 4.87 - 4.75 (m, 2H_{both rotamers}), 4.71 - 4.67 (m, 2H_{both rotamers}), 4.11 (s, 1H_{minor}), 3.97 (s, 1H_{major}).

 13 C NMR (101 MHz, CDCl₃) δ 209.58, 208.65, 166.21, 138.87, 138.47, 137.35, 136.77, 134.67, 131.95, 128.96, 128.63, 128.54, 127.93, 127.75, 127.53, 126.62, 126.11, 125.36, 122.54, 87.26, 86.25, 78.03, 76.33, 50.61, 49.35, 45.54, 45.00.

(*E*)-*N*-benzyl-*N*-(buta-2,3-dienyl)-3-o-tolylacrylamide (1q) The general procedure A was followed using (*E*)-3-*o*-tolylacrylic acid (60 mg, 0.37 mmol) and **S4** (56.4 mg, 0.44 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/1) afforded **1q** (90.9 mg, 0.30 mmol) as a

brown oil in a 81% yield as a mixture of rotamers (44:56).

¹H NMR (400 MHz, CDCl₃) δ 8.09 - 8.01 (m, 1H_{both rotamers}), 7.53 (d, *J* = 7.3 Hz, 1H_{major}), 7.42 - 7.12 (m, 9H_{both rotamers}), 6.81 (d, *J* = 15.3 Hz, 1H_{major}), 6.72 (d, *J* = 15.3 Hz, 1H_{minor}), 5.31 - 5.19 (m, 1H_{minor}), 5.19 - 5.07 (m, 1H_{major}), 4.87 - 4.82 (m, 2H_{major}), 4.80 - 4.75 (m, 2H_{minor}), 4.74 - 4.68 (m, 2H_{both rotamers}), 4.15 - 4.08 (m, 2H_{minor}), 4.04 - 3.94 (m, 2H_{major}), 2.46 (s, 3H_{major}), 2.41 (s, 3H_{minor}).

¹³C NMR (101 MHz, CDCl₃) δ 209.56, 208.66, 166.93, 141.26, 140.92, 137.57, 136.97, 134.46, 134.30, 130.75, 129.41, 128.92, 128.65, 128.58, 128.45, 127.66, 127.43, 126.61, 126.15, 118.81, 118.68, 87.28, 86.38, 77.88, 76.22, 50.53, 49.36, 45.59, 45.07.

(*E*)-*N*-benzyl-*N*-(buta-2,3-dienyl)-3-m-tolylacrylamide (1r) The general procedure A was followed using (*E*)-3-*m*-tolylacrylic acid (63.2 mg, 0.39 mmol) and **S4** (74.4 mg, 0.47 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/1) afforded **1r** (94,5 mg, 0.31 mmol) as a

brown oil in a 80% yield as a mixture of rotamers (42:58).

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 15.4 Hz, 1H_{both rotamers}), 7.42 – 7.10 (m, 9H_{both rotamers}), 6.89 (d, *J* = 15.4 Hz, 1H_{major}), 6.82 (d, *J* = 15.4 Hz, 1H_{minor}), 5.32 – 5.06 (m, 1H_{major}), 4.90 – 4.81 (m, 2H_{major}), 4.81 – 4.75 (m, 2H_{minor}), 4.72 (s, 2H_{major}), 4.70 (s, 2H_{minor}), 4.16 – 4.04 (m, 2H_{minor}), 4.04 – 3.92 (m, 2H_{major}), 2.37 (s, 3H_{major}), 2.32 (s, 3H_{minor}).

¹³C NMR (101 MHz, CDCl₃) δ 209.49, 208.69, 166.91, 143.69, 143.28, 138.39, 137.54, 136.96, 135.27, 130.49, 128.90, 128.68, 128.56, 128.49, 128.39, 127.65, 127.39, 126.67, 125.05, 117.31, 117.07, 87.27, 86.36, 77.77, 76.24.

(*E*)-*N*-benzyl-*N*-(buta-2,3-dienyl)-3-p-tolylacrylamide (1s) The general procedure A was followed using (*E*)-3-*p*-tolylacrylic acid (42.1 mg, 0.26 mmol) and **S4** (49.6 mg, 0.31 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/1) afforded **1s** (59.1 mg, 0.19 mmol) as

a brown oil in a 75% yield as a mixture of rotamers (42:58).

¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 15.3, 4.5 Hz, 1H_{both rotamers}), 7.43 (d, J = 7.8 Hz, 2H_{major}), 7.39 – 7.21 (m, 6H_{both rotamers}), 7.17 (d, J = 7.7 Hz, 2H_{major}), 7.12 (d, J = 7.5 Hz, 2H_{minor}), 6.86 (d, J = 15.4 Hz, 1H_{major}), 6.78 (d, J = 15.3 Hz, 1H_{minor}), 5.26 – 5.18 (m, 1H_{minor}), 5.16 – 5.06 (m, 1H major), 4.88 – 4.80 (m, 2H_{major}), 4.80 – 4.74 (m, 2H_{minor}), 4.72 (s, 2H_{major}), 4.69 (s, 2H_{minor}), 4.15 – 4.06 (m, 2H_{minor}), 4.01 – 3.95 (m, 2H_{major}), 2.36 (s, 3H_{major}), 2.32 (s, 3H_{minor}).

¹³C NMR (101 MHz, CDCl₃) δ 209.48, 208.68, 167.01, 143.49, 143.12, 139.92, 137.58, 137.01, 132.56, 132.39, 129.52, 128.89, 128.54, 128.38, 127.84, 127.62, 127.37, 126.63, 116.43, 116.22, 87.24, 86.39, 77.74, 76.21, 50.45, 49.30, 45.58, 44.95, 21.39.

(*E*)-N-benzyl-*N*-(buta-2,3-dienyl)-3-(pyridin-2-yl)acrylamide (1t) The general procedure A was followed using (E)-3-(pyridin-2-yl)acrylic acid (50.0 mg, 0.33 mmol) and **S4** (64.0 mg, 0.40 mmol). Purification by silica gel column chromatography (EtOAc = 100%) afforded **1t** (66.7 mg, 0.23

mmol) as a brown oil in a 70% yield as a mixture of rotamers (55:45).

¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, *J* = 5.1 Hz, 2H_{major}), 8.57 (d, *J* = 5.0 Hz, 2H_{minor}), 7.71 – 7.64 (m, 1H_{both rotamers}), 7.42 – 7.22 (m, 7H_{both rotamers}), 7.08 (d, *J* = 15.5 Hz, 1H_{major}), 6.99 (d, *J* = 15.4 Hz, 1H_{minor}), 5.23 (p, *J* = 6.5 Hz, 1H_{minor}), 5.17 – 5.07 (m, 1H_{major}), 4.91 – 4.83 (m, 2H_{major}), 4.83 – 4.76 (m, 2H_{minor}), 4.72 (s, 2H_{major}), 4.70 (s, 2H_{minor}), 4.15 – 4.10 (m, 2H_{minor}), 4.02 – 3.95 (m, 2H_{major}).

¹³C NMR (101 MHz, CDCl₃) δ 209.49, 208.62, 165.90, 150.48, 150.42, 142.52, 142.32, 140.50, 140.14, 137.13, 136.60, 129.02, 128.63, 128.40, 127.84, 127.56, 126.51, 122.25, 122.05, 121.72, 87.19, 86.11, 78.08, 76.46, 50.59, 49.47, 45.59, 45.12.

(*E*)-N-benzyl-*N*-(buta-2,3-dienyl)-3-(furan-2-yl)acrylamide (1u) The general procedure A was followed using (E)-3-(furan-2-yl)acrylic acid (31 mg, 0.22 mmol) and S4 (43 mg, 0.27 mmol). Purification by silica gel column chromatography (PE/Et₂O = 1/4) afforded 1u (38.8 mg, 0.14

mmol) as a yellow oil in a 63% yield as a mixture of rotamers (54:46).

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 15.1 Hz, 1H_{both rotamers}), 7.44 (s, 1H_{major}), 7.40 – 7.21 (m, 6H_{both rotamers}), 6.85 – 6.72 (m, 1H_{both rotamers}), 6.55 (dd, J = 9.7, 3.0 Hz, 1H_{both rotamers}), 6.44 (d, J = 13.6 Hz, 1H_{both rotamers}), 5.27 – 5.16 (m, 1H_{minor}), 5.16 – 5.06 (m, 1H_{major}), 4.89 – 4.81 (m, 2H_{major}), 4.80 – 4.74 (m, 2H_{minor}), 4.71 (s, 2H_{major}), 4.68 (s, 2H_{minor}), 4.12 – 4.05 (m, 2H_{minor}), 4.00 – 3.92 (m, 2H_{major}).

¹³C NMR (101 MHz, CDCl₃) δ 209.46, 208.71, 166.69, 151.75, 151.59, 143.96, 137.55, 136.92, 130.22, 129.87, 128.85, 128.55, 128.35, 127.61, 127.37, 126.74, 115.11, 114.79, 114.05, 113.91, 112.17, 87.25, 86.37, 77.80, 76.25, 50.37, 49.24, 45.53, 44.76.

(2E,4E)-N-benzyl-N-(buta-2,3-dienyl)hexa-2,4-dienamide (1v) The general procedure A was followed using (2E,4E)-hexa-2,4-dienoic acid (18 mg, 0.16 mmol) and S4 (30.7 mg, 0.19 mmol). Purification by silica gel column chromatography (PE/Et₂O = 2/1) afforded 1v (30 mg, 0.12 mmol)

as a pale yellow oil in a 75% yield as a mixture of rotamers (45:55).

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.17 (m, 6H_{both rotamers}), 6.35 – 6.02 (m, 3H_{both rotamers}), 5.18 (dd, *J* = 13.0, 6.5 Hz, 1H_{minor}), 5.05 (dd, *J* = 14.4, 8.4 Hz, 1H_{major}), 4.86 – 4.79 (m, 2H_{major}), 4.78 – 4.72 (m, 2H_{minor}), 4.67 (s, 2H_{major}), 4.60 (s, 2H_{minor}), 4.10 – 4.00 (m, 2H_{minor}), 3.92 - 3.84 (m, 2H_{major}), 1.87 – 1.79 (m, 3H_{both rotamers}).

¹³C NMR (101 MHz, CDCl₃) δ 209.49, 208.64, 167.22, 143.93, 143.62, 138.02, 137.87, 137.68, 137.05, 130.26, 128.83, 128.52, 128.38, 127.53, 127.32, 126.58, 118.25, 118.06, 77.68, 76.13, 50.29, 49.04, 45.36, 44.80, 30.33, 18.59.

Scheme 4s

N-benzyl-N-(prop-2-ynyl)cinnamamide (S14) The general procedure B was followed using cinnamic acid (100 mg, 0.68 mmol) and **S4** (117.6 mg, 0.81 mmol). Purification by silica gel column chromatography (PE/Et₂O = 2/1) afforded **S4** (148.5 mg, 0.54 mmol) as a white amorphous solid in a 79% which was then used in the next step without further purification.

N-benzyl-*N*-(3-cyclohexylideneallyl)cinnamamide (1w) The substituted allene derivative was synthesised according to the literature procedure, starting from **S14** (117.6 mg, 0.81 mmol).⁷ Compound **1w** was obtained in 74% yield as a pale yellow oil as a mixture of rotamers (71:29).

¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, *J* = 15.4, 6.1 Hz, 1H_{both rotamers}), 7.53 (d, *J* = 6.7 Hz, 2H_{major}), 7.44 (d, *J* = 3.8 Hz, 2H_{minor}), 7.41 – 7.28 (m, 7H_{both rotamers}), 6.89 (d, *J* = 15.4 Hz, 1H_{major}), 6.83 (d, *J* = 15.6 Hz, 1H_{minor}), 5.06 – 5.00 (m, 1H_{minor}), 4.99 – 4.93 (m, 1H_{major}), 4.69 (d, *J* = 5.9 Hz, 2H_{both rotamers}), 4.06 (d, *J* = 6.2 Hz, 2H_{minor}), 3.92 (d, *J* = 4.7 Hz, 2H_{major}), 2.08 (d, *J* = 5.0 Hz, 4H_{both rotamers}), 1.60 – 1.48 (m, 6H_{both rotamers}).

 ^{13}C NMR (101 MHz, CDCl₃) δ 198.67, 166.89, 142.72, 137.85, 135.54, 129.50, 128.90, 128.77, 128.55, 128.37, 127.81, 127.31, 126.66, 117.93, 106.60, 85.36, 49.21, 46.25, 31.42, 27.36, 27.09, 25.92.

(*E*)-*N*-benzyl-*N*-(buta-2,3-dienyl)oct-2-enamide (1x) The general procedure A was followed using (*E*)-oct-2-enoic acid (71 mg, 0.5 mmol) and **S4** (95.4 mg, 0.6 mmol). Purification by silica gel column chromatography afforded (PE/Et₂O = 2/1) 1x (113.2 mg, 0.40 mmol)

as a pale yellow oil in a 80% yield as as a mixture of rotamers (44:56).

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.17 (m, 5H_{both rotamers}), 6.99 (dq, *J* = 14.6, 7.2 Hz, 1H_{both rotamers}), 6.26 – 6.16 (m, 1H_{both rotamers}), 5.24 – 5.13 (m, 1H_{minor}), 5.06 (dd, *J* = 12.2, 6.0 Hz, 1H_{major}), 4.87 – 4.80 (m, 2H_{major}), 4.75 (d, *J* = 6.2 Hz, 2H_{minor}), 4.65 (s, 2H_{major}), 4.60 (s, 2H_{minor}), 4.07 – 3.96 (m, 2H_{minor}), 3.96 – 3.84 (m, 2H_{major}), 2.22 (dd, *J* = 13.9, 6.9 Hz, 2H_{major}), 2.15 (dd, *J* = 14.0, 7.0 Hz, 2H_{minor}), 1.43 – 1.23 (m, 6H_{both rotamers}), 0.94 – 0.88 (m, 3H_{both rotamers}).

¹³C NMR (101 MHz, CDCl₃) δ 209.55, 208.69, 167.11, 147.83, 147.46, 137.65, 137.04, 128.82, 128.52, 128.42, 127.54, 127.33, 126.64, 120.18, 87.14, 86.41, 77.60, 76.08, 50.36, 48.96, 45.42, 44.73, 40.92, 32.55, 32.49, 31.38, 31.31, 28.48, 28.02, 23.88, 22.46, 20.83, 17.51, 17.30, 14.66, 13.98, 7.93.

General procedure C

To a 1 dram vial equipped with magnetic stir bar were added allene 0.06 mmol, $Ir(ppy)_3$ 1 mol % and DCM (3 mL). The solution was sparged with nitrogen, sealed and irradiated with Blue LED strips (distance from the light source 12 cm) for 18-60 hours at room temperature. Conversion was monitored by TLC. Upon completion the reaction mixture was concentrated under reduced pressure and purified by chromatography on silica gel (mesh 230–400) using petroleum ether and Et₂O.

trans-3-hexyl-8-phenyl-3-azabicyclo[4.2.0]oct-5-en-2one (2a) The general procedure C was followed using 1a (17.0 mg, 0.06mmol). After 60h the reaction mixture was purified by silica gel column chromatography ($PE/Et_2O =$ 1/1) which afforded 2a (10.2 mg, 0.036 mmol) as a yellow

oil in a 60% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.7 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 5.57-5.52 (m, 1H), 4.13-4.05 (m, 1H), 3.76-3.66 (m, 2H), 3.52 (dd, *J* = 14.4, 7.5 Hz, 1H), 3.46-3.40 (m, 1H), 3.35 – 3.28 (m, 1H), 3.09 – 2.96 (m, 2H), 1.61-1.55 (m, 2H), 1.35-1,27 (m, 6H), 0.88 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.63, 143.26, 138.88, 128.31, 126.85, 126.29, 110.43, 51.96, 49.05, 47.03, 42.72, 35.51, 31.62, 27.42, 26.60, 22.58, 14.03.

IR (v_{max}/cm⁻¹): 2926, 1664, 1220, 1091, 750, 698.

HRMS (ESI) m/z calcd for $[C_{19}H_{25}NO + Na^{+}]$: 306.18284, found 306.18241.

trans-**3**-benzyl-**8**-phenyl-**3**-azabicyclo[**4**.**2**.**0**]oct-**5**-en-**2**-one (**2b**) The general procedure C was followed using **1b** (17.3 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column

chromatography (PE/Et₂O = 1/1) which afforded **2b** (13.5 mg, 0.047 mmol) as a yellow oil in a 78% yield.

¹H NMR (400 MHz, $CDCl_3$) δ 7.49 (d, J = 7.6 Hz, 2H), 7.38 – 7.20 (m, 8H), 5.48 (s, 1H), 4.66 (dd, J = 55.0, 14.7 Hz, 2H), 3.98 (dd, J = 16.1, 2.1 Hz, 1H), 3.79 (q, J = 8.3 Hz, 1H), 3.67 (dd, J = 16.1, 5.9 Hz, 1H), 3.54 (d, J = 2.3 Hz, 1H), 3.11 – 2.95 (m, 2H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 169.94, 143.12, 138.56, 137.18, 128.66, 128.36, 128.04, 127.45, 126.84, 126.37, 110.37, 51.82, 49.94, 48.61, 42.91, 35.74.

IR (v_{max}/cm⁻¹): 3027, 1641, 1446, 1077, 733, 697

HRMS (ESI) m/z calcd for $[C_{20}H_{19}NO + Na^{+}]$: 312.13588, found 312.13486.

Preparative scale synthesis of cycloadduct 2b

To a borosilicate test tube equipped with a magnetic stir bar were added allene **1b** (145 mg, 0.5 mmol), $Ir(ppy)_3$, (3.3 mg, 1 mol %) and DCM (20 mL). The solution was sparged with nitrogen, sealed with septum and irradiated with Blue LED strips (distance from the light source 12 cm) for 18 hours at room temperature. Upon completion the reaction mixture was concentrated under reduced pressure and purified by chromatography on silica gel (mesh 230–400) (PE/Et₂O = 1/1). Product **2b** was obtained in 76% yield (110 mg, 0.38 mmol) as a yellow oil.

trans-3-acetyl-8-phenyl-3-azabicyclo[4.2.0]oct-5-en-2-one (2c) The general procedure C was followed using 1c (14.5 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography (PE/Et₂O = 1/1) which afforded 2c (10.4 mg, 0.043 mmol) as colorless triclinic crystals in a 72% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.26 (m, 5H), 5.73 – 5.56 (m, 1H), 4.83 (dd, *J* = 16.8, 6.2 Hz, 1H), 4.01 – 3.90 (m, 1H), 3.84 (q, *J* = 8.2 Hz, 1H), 3.67 (dd, *J* = 4.6, 1.9 Hz, 1H), 3.17 – 3.02 (m, 2H), 2.59 (s, 3H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 173.25, 173.15, 142.47, 138.74, 128.57, 126.71, 126.63, 112.12, 53.80, 45.20, 42.17, 35.13, 27.40.

IR (v_{max}/cm⁻¹): 3058, 1954, 1647, 1264, 763, 695.

HRMS (ESI) m/z calcd for $[C_{15}H_{15}NO_2 + Na^{+}]$ 264.09950, found 264.09928.

Melting point 112 – 114 °C

(Z)-tert-butyl buta-2,3-dienyl(3-phenylacryloyl)carbamate (3d)

The general procedure C was followed using **1d** (30.0 mg, 0.1mmol). After 60h the reaction mixture was purified by silica gel column chromatography ($PE/Et_2O = 1/2$) which afforded **3d** (23 mg, 0.07 mmol) as a yellow oil in a 70% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 5H), 6.69 (d, *J* = 12.5 Hz, 1H), 6.41 (d, *J* = 12.5 Hz, 1H), 5.28 – 5.18 (m, 1H), 4.83 – 4.76 (m, 2H), 4.31 (dt, *J* = 5.9, 2.9 Hz, 2H), 1.49 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 208.82, 168.90, 152.55, 135.40, 134.98, 128.81, 128.35, 128.22, 125.32, 87.13, 83.54, 76.98, 42.18, 27.97.

IR (v_{max}/cm⁻¹): 2978, 1728, 1393, 1146, 1036, 848.

HRMS (ESI) m/z calcd for $[C_{18}H_{21}NO_3+Na^+]$: 322.14136, found 322.14017.

trans-3,8-diphenyl-3-azabicyclo[4.2.0]oct-5-en-2-one (2e) The general procedure C was followed using 1e (16.5 mg, 0.06mmol). After 60h the reaction mixture was purified by silica gel column chromatography (PE/Et₂O = 1/1) which afforded 2e (11.9 mg, 0.043 mmol) as a yellow oil in a 72% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.5 Hz, 2H), 7.43 – 7.20 (m, 8H), 5.68 (s, 1H), 4.58 – 4.49 (m, 1H), 4.06 (dd, *J* = 15.8, 5.4 Hz, 1H), 3.89 (q, *J* = 8.4 Hz, 1H), 3.64 (dd, *J* = 6.6, 3.9 Hz, 1H), 3.12 (p, *J* = 13.6 Hz, 2H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 170.11, 143.08, 142.78, 139.37, 129.09, 128.34, 126.84, 126.74, 126.37, 126.17, 111.10, 52.60, 52.53, 42.69, 35.29.

IR (v_{max}/cm⁻¹): 3058, 1659, 1494, 1286, 753, 696.

HRMS (ESI) m/z calcd for $[C_{19}H_{17}NO+H^{+}]$: 276.13829, found 276.13745.

trans-3-benzyl-8-(4-hydroxyphenyl)-3-azabicyclo[4.2.0]oct-5en-2-one (2f) The general procedure C was followed using 1f (18.3 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography ($PE/Et_2O = 1/2$) which afforded 2f (14.64 mg, 0.048 mmol) as a yellow oil in a 80% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 5H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.70 (d, *J* = 8.4 Hz, 2H), 5.46 (s, 1H), 4.77 (d, *J* = 14.7 Hz, 1H), 4.55 (d, *J* = 14.7 Hz, 1H), 4.03-3.94 (m, 1H), 3.74 – 3.59 (m, 2H), 3.57-3.50 (m, 1H), 3.05-2.87 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.73, 155.29, 138.67, 136.75, 133.73, 128.73, 128.03, 127.84, 127.57, 115.49, 110.03, 52.11, 50.03, 48.70, 43.00, 36.92.

IR (v_{max}/cm⁻¹): 3272, 2954, 1611, 1433, 1231, 702.

HRMS (ESI) m/z calcd for $[C_{20}H_{19}NO_2 + H^+]$: 306.14886, found 306.14804.

trans-3-benzyl-8-(2-methoxyphenyl)-3-azabicyclo[4.2.0]oct-5-en-2one (2g) The general procedure C was followed using 1g (19.1 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography (PE/Et₂O = 1/1) which afforded **2g** (16.4 mg, 0.052 mmol) as a yellow oil in a 86% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.4 Hz, 1H), 7.35 – 7.24 (m, 6H), 7.21 (t, *J* = 7.8 Hz, 1H), 6.97 (t, *J* = 7.4 Hz, 1H), 6.84 (d, *J* = 8.1 Hz, 1H), 5.44 (d, *J* = 4.5 Hz, 1H), 4.64 (dd, *J* = 71.1, 14.7 Hz, 2H), 4.00 (d, *J* = 16.1 Hz, 1H), 3.83 – 3.77 (m, 5H), 3.67 (dd, *J* = 16.0, 5.8 Hz, 1H), 3.10 (dd, *J* = 13.4, 6.4 Hz, 1H), 2.90 – 2.80 (m, 1H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 170.19, 157.63, 139.81, 137.32, 130.86, 128.62, 128.27, 128.06, 127.66, 127.38, 120.64, 110.31, 109.68, 55.27, 49.84, 48.95, 48.68, 40.07, 37.89, 29.71.

IR (v_{max}/cm⁻¹): 2920, 1643, 1492, 1245, 1028, 734.

HRMS (ESI) m/z calcd for $[C_{21}H_{21}NO_2 + H^+]$: 320.16451, found 320.16345.

trans-3-benzyl-8-(3-methoxyphenyl)-3-azabicyclo[4.2.0]oct-5en-2-one (2h) The general procedure C was followed using 1h (19.1 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography ($PE/Et_2O = 1/1$) which afforded 2h (16.8 mg, 0.052 mmol) as a yellow oil in a 88% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.21 (m, 6H), 7.12 – 7.03 (m, 2H), 6.78 (dd, *J* = 8.2, 2.1 Hz, 1H), 5.51 – 5.48 (m, 1H), 4.75 (d, *J* = 14.8 Hz, 1H), 4.56 (d, *J* = 14.8 Hz, 1H), 4.04 – 3.92 (m, 1H), 3.83 (s, 3H), 3.76 (dd, *J* = 16.2, 7.8 Hz, 1H), 3.66 (dd, *J* = 16.2, 5.9 Hz, 1H), 3.57 – 3.50 (m, 1H), 3.10 – 2.95 (m, 2H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 169.91, 159.74, 144.81, 138.46, 137.14, 129.36, 128.66, 128.00, 127.44, 119.08, 112.38, 112.21, 110.38, 55.26, 51.81, 49.89, 48.58, 42.96, 35.69.

IR (v_{max}/cm⁻¹): 2939, 1661, 1640, 1260, 1042, 733.

HRMS (ESI) m/z calcd for $[C_{21}H_{21}NO_2 + H^+]$: 320.16451, found 320.16428.

trans-3-benzyl-8-(4-methoxyphenyl)-3-azabicyclo[4.2.0]oct-5en-2-one (2i) The general procedure C was followed using 1i (19.1 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography (PE/Et₂O = 1/1) which afforded 2i (16.8 mg, 0.052 mmol) as a yellow oil in a 88%

yield.

¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.5 Hz, 2H), 7.36 – 7.24 (m, 5H), 6.88 (d, *J* = 8.5 Hz, 2H), 5.46 (s, 1H), 4.72 (d, *J* = 14.7 Hz, 1H), 4.58 (d, *J* = 14.7 Hz, 1H), 4.02 – 3.93 (m, 1H), 3.80 (s, 3H), 3.75 – 3.62 (m, 2H), 3.52 – 3.44 (m, 1H), 3.00 (dt, *J* = 22.4, 12.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.00, 158.21, 138.60, 137.19, 135.36, 128.64, 128.01, 127.87, 127.42, 113.77, 110.26, 55.31, 52.03, 49.89, 48.60, 42.38, 35.91.

IR (v_{max}/cm⁻¹): 3033, 1643, 1512, 1246, 1031, 732.

HRMS (ESI) m/z calcd for $[C_{21}H_{21}NO_2 + Na^{\dagger}]$: 342.14645, found 342.14568.

(Z)-N-benzyl-3-(2,6-dimethoxyphenyl)-N-(propa-1,2dienyl)acrylamide (3j) The general procedure C was followed using 1j (20.1 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography ($PE/Et_2O = 1/2$) which afforded 3j (18.5 mg, 0.055 mmol) as a yellow oil in a 92% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.11 (m, 8H_{both rotamers}), 6.73 (dd, *J* =

12.5, 4.8 Hz, $1H_{both \ rotamers}$), 6.52 (dd, J = 8.2, 6.6 Hz, $2H_{both \ rotamers}$), 6.26 (dd, J = 12.4, 10.0 Hz, $1H_{both \ rotamers}$), 5.12 (p, J = 6.9 Hz, $1H_{a}$), 4.87 (dt, J = 12.6, 6.4 Hz, $1H_{b}$), 4.79 (dd, J = 6.1, 3.1 Hz, 1H), 4.73 – 4.66 (m, $1H_{both \ rotamers}$), 4.55 (d, J = 5.4 Hz, $2H_{both \ rotamers}$), 3.94 – 3.87 (m, $2H_{both \ rotamers}$), 3.77 (s, $3H_{both \ rotamers}$), 3.67 (s, $3H_{both \ rotamers}$).

¹³C NMR (101 MHz, CDCl₃) δ 209.79, 209.11, 168.87, 168.61, 157.73, 137.65, 136.97, 129.60, 129.49, 129.13, 128.90, 128.68, 128.58, 128.33, 127.44, 127.24, 127.16, 125.01, 124.56, 113.90, 103.64, 86.60, 86.13, 75.51, 55.65, 55.50, 50.56, 47.05, 45.86, 43.23.

IR (v_{max}/cm⁻¹): 2935, 1954, 1640, 1471, 1108, 730.

HRMS (ESI) m/z calcd for $[C_{22}H_{23}NO_3 + H^+]$: 350.17507, found 350.17387.

trans-3-benzyl-8-(4-chlorophenyl)-3-azabicyclo[4.2.0]oct-5-en-2one (2k) The general procedure C was followed using 1k (19.4 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography (PE/Et₂O = 1/1) which afforded 2k (9.7 mg, 0.03 mmol) as a yellow oil in a 50% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.3 Hz, 2H), 7.36 – 7.25 (m, 7H), 5.52 – 5.47 (m, 1H), 4.65 (dd, *J* = 59.0, 14.7 Hz, 2H), 4.04 – 3.94 (m, 1H), 3.78 – 3.63 (m, 2H), 3.52 – 3.44 (m, 1H), 3.01 (dt, *J* = 21.1, 12.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 169.73, 141.58, 138.02, 137.05, 132.15, 128.68, 128.43, 128.30, 128.01, 127.50, 110.61, 51.82, 49.94, 48.60, 42.37, 35.63.

IR (v_{max}/cm⁻¹): 3060, 2846, 1626, 1489, 742, 701.

HRMS (ESI) m/z calcd for $[C_{20}H_{18}CINO + Na^{+}]$: 346.09691, found 346.09611.

trans-3-benzyl-8-(2-chlorophenyl)-3-azabicyclo[4.2.0]oct-5-en-2-one (2I) The general procedure C was followed using 1I (19.4mg, 0.06mmol). After 60h the reaction mixture was purified by silica gel column chromatography ($PE/Et_2O = 1/1$) which afforded 2I (7.56 mg, 0.023 mmol) as a yellow oil in a 39% yield.

¹H NMR (400 MHz, $CDCI_3$) δ 7.68 (d, J = 7.6 Hz, 1H), 7.37 – 7.27 (m, 7H), 7.18 (t, J = 7.5 Hz, 1H), 5.52 – 5.47 (m, 1H), 4.65 (dd, J = 81.7, 14.7 Hz, 2H), 4.02 (d, J = 16.1 Hz, 1H), 3.92 (dd, J = 16.7, 8.4 Hz, 1H), 3.85 – 3.78 (m, 1H), 3.71 (dd, J = 17.2, 5.1 Hz, 1H), 3.32 (dd, J = 13.9, 7.6 Hz, 1H), 2.85 – 2.75 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 169.51, 139.92, 138.33, 137.12, 133.51, 129.45, 128.67, 128.57, 128.10, 127.84, 127.49, 126.95, 110.23, 49.89, 48.68, 48.41, 42.12, 38.33, 29.71.

IR (v_{max}/cm⁻¹): 2920, 1643, 1474, 1235, 1028, 734.

HRMS (ESI) m/z calcd for $[C_{20}H_{18}CINO + Na^{+}]$: 346.09691, found 346.09580.

trans-3-benzyl-8-(o-tolyl)-3-azabicyclo[4.2.0]oct-5-en-2-one (2q) The general procedure C was followed using 1q (18.2 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography (PE/Et₂O = 1/1) which afforded 2q (14.5 mg, 0.048 mmol) as a yellow oil in a 80% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.6 Hz, 1H), 7.34 – 7.24 (m, 6H), 7.14 (d, *J* = 4.3 Hz, 2H), 5.48 (s, 1H), 4.65 (dd, *J* = 50.7, 14.7 Hz, 2H), 4.07 – 3.94 (m, 1H), 3.90 – 3.74 (m, 2H), 3.69 (dd, *J* = 17.1, 5.5 Hz, 1H), 3.13 (dd, *J* = 13.8, 7.3 Hz, 1H), 2.87 – 2.76 (m, 1H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.82, 140.61, 138.78, 137.24, 136.03, 130.15, 128.64, 128.09, 127.44, 126.50, 126.27, 126.14, 110.18, 49.91, 49.81, 48.67, 41.49, 37.64, 19.85.

IR (v_{max}/cm⁻¹): 3029, 1644, 1453, 1266, 732, 699.

HRMS (ESI) m/z calcd for $[C_{21}H_{21}NO + Na^{+}]$: 326.15154, found 326.15066.

trans-3-benzyl-8-(m-tolyl)-3-azabicyclo[4.2.0]oct-5-en-2-one (2r) The general procedure C was followed using 1r (18.2 mg, 0.06mmol). After 60h the reaction mixture was purified by silica gel column chromatography (PE/Et₂O = 1/1) which afforded 2r (11.3 mg, 0.037 mmol) as a yellow oil in a 62% yield.

¹H NMR (400 MHz, $CDCI_3$) δ 7.37 – 7.21 (m, 8H), 7.04 (d, J = 7.1 Hz, 1H), 5.50 - 5.45 (m, 1H), 4.75 (d, J = 14.7 Hz, 1H), 4.56 (d, J = 14.7 Hz, 1H), 3.98 (dd, J = 16.1, 2.1 Hz, 1H), 3.75 (q, J = 8.3 Hz, 1H), 3.67 (dd, J = 16.1, 5.9 Hz, 1H), 3.54 (d, J = 2.3 Hz, 1H), 3.11 – 2.94 (m, 2H), 2.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.00, 143.08, 138.69, 137.99, 137.20, 128.66, 128.28, 128.03, 127.62, 127.44, 127.16, 123.79, 110.31, 51.80, 49.92, 48.60, 42.88, 35.82, 21.49.

IR (v_{max}/cm⁻¹): 3027, 1643, 1480, 1233, 734, 699.

HRMS (ESI) m/z calcd for $[C_{21}H_{21}NO + Na^{+}]$: 326.15154, found 326.15118.

trans-**3**-benzyl-**8**-(**p**-tolyl)-**3**-azabicyclo[**4**.**2**.**0**]oct-**5**-en-**2**-one (**2**s) The general procedure C was followed using **1s** (18.2 mg, 0.06mmol). After 60h the reaction mixture was purified by silica gel column chromatography (PE/Et₂O = 1/1) which afforded **2s** (10.9 mg, 0.036 mmol) as a yellow oil in a 60% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.25 (m, 7H), 7.16 (d, *J* = 7.9 Hz, 2H), 5.47 (s, 1H), 4.72 (d, *J* = 14.7 Hz, 1H), 4.58 (d, *J* = 14.7 Hz, 1H), 3.98 (dd, *J* = 16.1, 2.1 Hz, 1H), 3.71 (ddd, *J* = 21.8, 16.3, 7.0 Hz, 2H), 3.51 (s, 1H), 3.01 (dt, *J* = 22.5, 12.8 Hz, 2H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.02, 140.18, 138.71, 137.22, 135.89, 129.03, 128.66, 128.04, 127.43, 126.73, 110.26, 51.94, 49.93, 48.61, 42.66, 35.82, 21.05.

IR (v_{max}/cm⁻¹): 2921, 1652, 1453, 1170, 734, 699.

HRMS (ESI) m/z calcd for $[C_{21}H_{21}NO + Na^{+}]$: 326.15154, found 326.15078.

trans-3-benzyl-8-(pyridin-2-yl)-3-azabicyclo[4.2.0]oct-5-en-2-one (2t) The general procedure C was followed using 1t (17.4 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography (EtOAc = 100%) which afforded 2t (7.1 mg, 0.025 mmol) as a yellow oil in a 41% yield.

¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 2H), 7.44 (d, *J* = 5.0 Hz, 2H), 7.37 – 7.25 (m, 6H), 5.55 – 5.50 (m, 1H), 4.66 (dd, *J* = 59.3, 14.7 Hz, 2H), 4.00 (dd, *J* = 16.3, 2.0 Hz, 1H), 3.82 – 3.65 (m, 2H), 3.56 – 3.50 (m, 1H), 3.06 (dt, *J* = 21.3, 12.7 Hz, 2H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 169.37, 151.87, 149.72, 137.55, 136.94, 128.72, 128.03, 127.57, 122.22, 111.12, 51.36, 50.00, 48.63, 42.01, 35.00.

IR (v_{max}/cm⁻¹): 3029, 1643, 1599, 1414, 1071, 734.

HRMS (ESI) m/z calcd for $[C_{19}H_{18}N_2O + H^+]$: 291.14919, found 291.14826.

trans-3-benzyl-8-(furan-2-yl)-3-azabicyclo[4.2.0]oct-5-en-2-one (2u) The general procedure C was followed using 1u (16.7mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography (PE/Et₂O = 1/3) which afforded 2u (12.7 mg, 0.046 mmol) as a yellow oil in a 76% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.23 (m, 6H), 6.34 – 6.29 (m, 1H), 6.21 (d, *J* = 3.1 Hz, 1H), 5.54 – 5.44 (m, 1H), 4.62 (dd, *J* = 42.7, 14.7 Hz, 2H), 3.96 (d, *J* = 15.6 Hz, 1H), 3.75 – 3.61 (m, 3H), 3.15 – 3.04 (m, 1H), 3.00 – 2.91 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 169.48, 155.55, 141.57, 138.60, 137.14, 128.63, 128.07, 127.45, 111.10, 110.38, 105.67, 50.38, 49.88, 48.58, 36.13, 35.44.

IR (v_{max}/cm⁻¹): 2917, 2243, 1640, 1479, 727, 699.

HRMS (ESI) m/z calcd for $[C_{18}H_{17}NO_2 + Na^{\dagger}]$: 302.11515, found 302.11452.

trans-3-benzyl-8-(prop-1-en-1-yl)-3-azabicyclo[4.2.0]oct-5-en-2-one (2v) The general procedure C was followed using 1v (15.2 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography (PE/Et₂O = 1/1) which afforded 2v (12.4 mg, 0.049 mmol) as a yellow oil in a 82% yield as a mixture of isomers.

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.22 (m, 5H_{both isomers}), 5.76 – 5.47 (m, 2H_{both isomers}), 5.38 (s, 1H_{both isomers}), 4.70 – 4.50 (m, 2H_{both isomers}), 3.92 (d, *J* = 16.1 Hz, 1H_{both isomers}), 3.61 (dd, *J* = 16.0, 5.6 Hz, 1H_{both isomers}), 3.41 (p, *J* = 8.0 Hz, 1H_{isomerA}), 3.25 (s, 1H_{both isomers}), 3.14 – 3.03 (m, 1H_{isomerB}), 2.84 (dd, *J* = 13.7, 7.4 Hz, 1H_{isomerA or B}), 2.61 (dd, *J* = 21.0, 10.2 Hz, 1H_{both isomers}), 1.72 (dd, *J* = 8.6, 6.3 Hz, 3H_{both isomers}).

¹³C NMR (101 MHz, CDCl₃) δ 170.12, 170.03, 139.74, 139.22, 137.28, 133.16, 133.02, 128.61, 128.04, 128.00, 127.38, 125.79, 125.73, 109.94, 109.82, 51.47, 50.75, 49.81, 49.78, 48.61, 48.53, 41.28, 36.75, 36.48, 35.79, 17.79, 13.40.

IR (v_{max}/cm⁻¹): 2915, 1644, 1453, 1233, 732, 699.

HRMS (ESI) m/z calcd for $[C_{17}H_{19}NO + H^{\dagger}]$: 254.15394, found 254.15347.

trans-3-benzyl-8-phenyl-3-azaspiro[bicyclo[4.2.0]octane-7,1'cyclohexan]-5-en-2-one (2w) The general procedure C was followed using 1w (21.4 mg, 0.06mmol). After 18h the reaction mixture was purified by silica gel column chromatography (PE/Et₂O = 2/1) which afforded 2w (19.1 mg, 0.053 mmol) as a yellow oil in a 89% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.19 (m, 9H), 5.72 – 5.62 (m, 1H), 4.65 (s, 2H), 4.08 – 3.98 (m, 1H), 3.80 (td, *J* = 6.2, 3.0 Hz, 1H), 3.69 (ddd, *J* = 16.1, 5.9, 2.3 Hz, 1H), 3.40 (d, *J* = 9.1 Hz, 1H), 1.92 (d, *J* = 14.0 Hz, 1H), 1.66 (ddd, *J* = 21.1, 12.7, 6.0 Hz, 3H), 1.48 (ddd, *J* = 13.3, 10.4, 6.4 Hz, 3H), 1.32 – 1.20 (m, 1H), 1.17 – 1.05 (m, 1H), 0.98 (td, *J* = 12.8, 3.2 Hz, 1H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 170.72, 147.97, 138.58, 137.32, 128.62, 128.12, 128.09, 127.77, 127.39, 126.34, 109.81, 53.93, 53.36, 49.89, 48.89, 43.52, 38.15, 30.73, 25.86, 24.73, 23.58.

IR (v_{max}/cm⁻¹): 2925, 1645, 1447, 909, 728, 698.

HRMS (ESI) m/z calcd for $[C_{25}H_{27}NO + Na^{+}]$: 380.19849, found 380.19742.

Cyclic voltammetry of compound 1a

The electrochemical properties of **1a** were investigated using cyclic voltammetry (CV) at room temperature. The measurements were performed in a solvent mixture of acetonitrile and dichloromethane (2:1 v/v) with tetrabutylammonium hexafluorophosphate (nBu_4NPF_6) (0.1 M) as the supporting electrolyte (98%, Sigma-Aldrich) at 100 mV/s. Prior to recording each voltammogram, the sample was extensively purged with argon.

The CV measurements were carried out using a METROHM Autolab PGSTAT128N electrochemical workstation. A glassy carbon electrode was used as the working electrode, Ag/AgCl served as the reference electrode, and a platinum sheet electrode acted as the counter electrode.

Figure 2S. Cyclic voltammogram of compound 1a

Crystal structure determination of 2c

Diffraction experiment was performed with Oxford Diffraction Gemini S diffractometer equipped with a Sapphire CCD detector. Data were collected at room temperature. *CrysAlisPro*⁸ was used for instrument control and data reduction. Crystal structure was solved with *SHELXT*⁹ and refined with *SHELXL*.¹⁰ The *ShelXle*¹¹ was employed as the interface for refinement procedures. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were introduced in idealized positions and refined using a riding model.

Crystal structure model was validated internally through *PLATON*¹² and externally against *Mogul* knowledge base¹³ using *Mercury CSD*.¹⁴ Crystallographic data associated with this publication are deposited with the Cambridge Crystallographic Data Centre under the CCDC Number 2233308. They are available for free at <u>https://www.ccdc.cam.ac.uk/structures</u>. Selected crystallographic and refinement details are presented in Table 1S. Molecular packing is depicted in Figure 3S.

Parameter Value CCDC number 2233308 **Empirical formula** $C_{15}H_{15}NO_2$ Formula weight 241.28 Temperature, K 295(2) Crystal system triclinic Space group $P\overline{1}$ a / Å 6.17145(16) b/Å 9.8923(3) c/Å 11.4954(4) α/° 64.793(3) β/° 80.464(3) v/° 81.321(2) V/Å³ 623.65(4) Ζ 2 $\rho_{\rm calc}$ / g cm⁻³ 1.285 μ / mm^{-1} 0.085 F(000) 256 Crystal size / mm³ 0.45, 0.48, 0.98 Crystal color colorless block Crystal shape Wavelength, Å 0.71073 2∂ range, ° 4.6–58.4 **Reflections collected** 24227 Independent reflections 3138 0.021 R_{int} 0.012 **R**_{sigma} Completeness, % 99.9 Reflections used in refinement 3138 Restraints 0 Parameters 164 Goodness-of-fit on F^2 1.059 $R_1[l \ge 2\sigma(l)]$ 0.0547 $wR_2[I \ge 2\sigma(I)]$ 0.1450 R₁ [all data] 0.0666 wR₂[all data] 0.1550 Largest peak, eÅ⁻³ 0.44 Largest hole, eÅ⁻³ -0.19

Table 1S. Selected crystallographic and refinement details of 2c

Figure 3S. Crystal structure of 2c viewed along all three unit cell directions

Computational details

All results are obtained through Gaussian 09¹⁵ electronic structure program suite (Revision A.03), by using Density Functional Theory (DFT)¹⁶ approach. All calculations have been carried out on B3LYP^{17,18} density functional approximation, coupled with 6-311++G¹⁹ orbital basis set, for all atoms except Ir, with the dispersion correction on the D3BJ-level.²⁰ For the Ir(III) atom, LANL2DZ effective core potential has been used.²¹⁻²³ Furthermore, to make calculations as realistic as possible, the solvation effects of DCM have been included using the polarizable conductor continuum model (C-PCM) through the solvent cavity reaction field (SCRF) method.²⁴ Mentioned computational conditions were applied for full relaxation and optimization of all molecular species of interest. Vibration frequency calculations were conducted at the same level, in order to validate the transition states, and provide the thermodynamic corrections to the energy. All transition states were confirmed to be the saddle points by the presence of single imaginary frequency, belonging to the reaction coordinate. On the other hand, each minimum has zero imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were performed for all transition states in order to trace the reaction pathway and validate the reactants and products.^{25,26}

Table 2S. Theoretical values of HOMO-LUMO gap ($E(_{LUMO-HOMO})$), together with the triplet state energy (E_T) of all critical molecular species, based on relative Gibbs free energy, calculated on B3LYP-D3 level of theory

Calculated theoretical parameters (energies) on B3LYP-D3 level of theory				
Molecular species	Е(_{LUMO-HOMO}) (eV)	Ε _τ (kcal/mol)		
lr(ppy)₃	3.6	54.3		
E conformer:				
1c	4.3	48.1		
10	3.8	48.2		
1y	3.9	48.9		
Z conformer:				
1c'	5.0	48.0		
10'	3.9	60.1		
1y'	4.2	48.7		

Calculated theoretical energies on B3LYP-D3 level of theory in atomic units				
Molecular species	1c	10	1y	
Reactant S ₀	-785.867026	-990.44127	-900.404975	
Reactant T ₁	-785.790423	-990.36448	-900.327115	
TS1 S ₁	-785.815857	-	-900.354346	
TS1 T ₁	-785.781667	-	-900.319242	
Intermediate S ₁	-785.844561	-	-900.380588	
Intermediate T ₁	-785.845190	-	-900.381478	
TS2 S ₁	-785.764083	-	-900.371778	
TS2 T ₁	-785.739001	-	-900.295324	
Z- product S₀	-785.856804	-990.433989	-900.396274	
Z- product T ₁	-785.790423	-990.345532	-900.327115	
Final product S ₀	-785.888034	-	-900.423000	

 Table 3S. The energy of key molecular species (in atomic units), based on relative Gibbs free energy, calculated on B3LYP-D3 level of theory

Figure 4S. HOMO and LUMO orbitals and the HOMO-LUMO gap of the Ir(ppy)₃ catalyst (A), compounds **1c**, **1o**, **1y** (B), and corresponding spin-electron density of the unrelaxed excited triplet state (C)

Figure 4S shows that the HOMO orbital of the catalyst is obviously one of the *d*-orbitals of the metal ion (d_{z^2}) , whereas the LUMO orbital is distributed across the whole ligand compartment $(\pi^*(\text{ppy})_3)$ and

considerably delocalized. This observation is in accordance with conclusions driven from extensive work done in the field of charge-transfer (CT) properties of Ir^{III}- containing molecular systems.^{27–29}

Theoretically obtained results

Herein, the most prominent reaction mechanism was examined within the Density Functional Theory (DFT) ¹⁶ framework, by theoretically modeling all terminal molecular species, as well as intermediates and transition states along the specific pathway. The discussion is provided in terms of relative (Gibbs free) energies obtained from quantum-chemical calculations (relative to the ground state of a specific chemical moiety) and presented in Figure 2 in the manuscript.

In regard to the main reaction pathway (thermodynamically more favourable; green path), starting from the excited reactants in their triplet state, calculated barrier is significantly lower (Figure 2) than the barrier for the uncatalyzed reaction, whereby the transition state (TS1) is formed. From this point, the reaction proceeds through a highly exothermic process (~40 kcal/mol), leading to the establishment of the chemical bond and formation of the intermediate molecular species, which also represents the minimal energy (surface) crossing-point between the triplet state and the bi-radical singlet state. The process further proceeds over the singlet bi-radical multideterminantal³⁰ transition state (TS2), obtained through the Noodleman's methodology,^{31,32} called the broken-symmetry (BS). BS approach represents multideterminantal states with an "antiferromagnetically-coupled" Slater determinant, originating from localized bi-radical spin centres. BS orbitals are allowed to relax from the starting form under the action of the variational principle.^{33,34} Iso-surface plot of the TS2 electron density (Figure 2) shows that the density is dominantly shared between two carbon atoms which will undergo the formation of the final chemical bond and thus the formation of the final product(s). Calculations revealed that this final step is also exothermic, and that the reaction products are considerably more stable (13.2 and 11.3 kcal/mol for 2c and 2y) than the reactants in their initial singlet ground state. All geometries (corresponding coordinates) are provided in below.

Conformational analysis of 1d derivative

Figure 5S. The most abundant conformers of the molecule 1d* and the positioning of relevant double bonds.

* The most abundant structures are obtained using a Python script written for this purpose. Namely, the script used the Z-matrix of the optimized **1d-i** structure, and by determining all rotable bonds, changed the corresponding torsion angle for 120°. All generated structures were relaxed and optimized, using the previously described computational conditions, and all of these structures converged in one of four structures presented in the Figure 5S.

Table 4S. The energy of 4 most abundant conformers of the molecule **1d** (presented in figure 5S), based on relative Gibbs free energy, and calculated on B3LYP-D3 level of theory

Calculated theoretical energies on B3LYP-D3 level of theory			
Molecular species	E (Hartree)	E difference (Hartree)	E difference (kcal/mol)
1d-i	-861.1060	0.0063	4.0
1d-ii	-861.1071	0.0052	3.3
1d-iii	-861.1123	0.0000	0.0
1d-iiii	-861.1116	0.0007	0.4

In order for the cycloaddition to take place, two double bonds that participate in the reaction should be position in close proximity. In other words, **1d** should adopt either conformation **1d-i** or **1d-ii**. Calculations revealed that these two conformers are less stable than the most stable **1d-iii** (and almost equienergetic **1d-iiii**), most likely due to dipole-dipole interactions or due to electron density interactions of the neighboring O-atoms. All these results suggest that the N-protection should be carefully considered when planning transformations of this type.

Z-conformer geometry investigation

Final important theoretical insight can be extracted from the actual geometry of the Z-conformer(s). In order to determine geometrical differences of two substrates with different reactivity (**1y'** and **1o'**), the corresponding geometrical structures are overlapped and presented in the Figure 6S. The hydrogen atoms are omitted for clarity. Figure 6S clearly shows the pronounced compact arrangement of the **1o'** molecular species. The hypothesis that can be drawn from this insight is that there might be some kind of fine interaction between the allene compartment and π - electrons of the aromatic ring. Detailed examination of possible fine interactions, together with accurate description of complex excited states (and their coupling) requires the utilization of high-level *ab initio* methods. Nevertheless, even with limited (approximative) theoretical tools some important phenomena are detected and some hypothesis and explanations proposed. All of these aspects will be the topic of the future work.

Figure 6S. Z-conformers 1y' and 1o' geometry overlap (B) and optimized excited triplet state of 1y' (A) and 1o' (C), with visualized corresponding spin-electron density

Optimized geometries for all chemical structures

Ir(ppy)₃ S₀

С	-1.221108000	2.615627000	0.590340000
С	-1.182347000	1.266067000	1.076694000
С	-1.974270000	0.975910000	2.216652000
С	-2.753005000	1.963230000	2.847861000
С	-2.771172000	3.287700000	2.353519000
С	-2.004291000	3.609483000	1.223714000
С	-0.391740000	2.892232000	-0.591441000
С	1.107470000	1.923205000	-2.156147000
С	1.272815000	3.139241000	-2.827022000
С	0.575364000	4.269927000	-2.352719000
С	-0.256409000	4.143047000	-1.232374000
Н	-1.974770000	-0.033001000	2.62000000
Н	-3.346030000	1.706213000	3.723958000
Н	-3.373003000	4.049248000	2.843327000
Н	-2.019073000	4.628181000	0.844109000
Н	1.624122000	1.026662000	-2.475498000
Н	1.929958000	3.196773000	-3.688062000
Н	0.682936000	5.230800000	-2.847387000
Н	-0.794749000	5.004513000	-0.854132000
Ir	0.001026000	-0.001352000	0.029597000
С	-2.310450000	-1.780068000	-0.603811000
С	-2.200322000	-0.001457000	-2.172063000
С	-3.462388000	-2.280802000	-1.248555000
С	-1.664211000	-2.363197000	0.580720000
С	-3.334725000	-0.460875000	-2.848875000
Н	-1.673178000	0.889132000	-2.490893000
С	-3.976932000	-1.623601000	-2.373966000
Н	-3.949635000	-3.171450000	-0.868984000
С	-2.139197000	-3.538504000	1.209561000
С	-0.515354000	-1.658339000	1.073731000
Н	-3.703628000	0.078555000	-3.714590000
Н	-4.863098000	-2.005813000	-2.872145000
С	-1.485407000	-4.043529000	2.343436000
Н	-3.011530000	-4.060013000	0.823221000
С	0.122607000	-2.200582000	2.218101000
С	-0.349900000	-3.367621000	2.846064000
Н	-1.848471000	-4.945505000	2.829939000
Н	0.995091000	-1.698516000	2.627077000
Н	0.162293000	-3.753860000	3.725696000
С	2.703482000	-1.104565000	-0.594029000
С	1.117209000	-1.911074000	-2.164396000
С	3.720729000	-1.840616000	-1.239252000
С	2.877771000	-0.255785000	0.593161000
С	2.089398000	-2.656362000	-2.839383000
Н	0.083014000	-1.909337000	-2.485144000

С	3.417224000	-2.617850000	-2.364683000
Н	4.735117000	-1.804137000	-0.859470000
С	1.689342000	0.382913000	1.082151000
С	4.129721000	-0.080388000	1.229127000
Н	1.812445000	-3.249066000	-3.704571000
н	4.197297000	-3.185857000	-2.863059000
С	1.833948000	1.206325000	2.227586000
С	4.234044000	0.737513000	2.364139000
Н	5.018978000	-0.576799000	0.847632000
C	3.077856000	1.381883000	2.861271000
н	0.960338000	1,709410000	2,633154000
н	5,193874000	0.873648000	2.856344000
н	3 151239000	2 018309000	3 741535000
N	0 296972000	1 799591000	-1 073616000
N	-1 699285000	-0 641762000	-1 084458000
N	1 413310000	-1 153335000	-1 077028000
1.1	1.415510000	1.133333000	1.077020000
lr(n	ny), T.		
п (р С	-2 723901000	0 950687000	0 605201000
c c	-1 741473000	0.033299000	1 098608000
c	-2 0919/0000	-0.752090000	2 221668000
c	-2 248202000	-0.732030000	2.221008000
c	-4 300702000	-0.022870000	2.843313000
c	-2 087202000	1 070055000	1 22828000
C C	-2 242176000	1.0799330000	-0 581202000
c	-2.342170000	2 1 2 5 7 2 4 0 0 0	2 152597000
c	1 261692000	2.123724000	2.133367000
c	2 659015000	2 272006000	2.827048000
c	2 1/7052000	2 604428000	1 227724000
с ц	-3.147933000	2.094436000	-1.227724000
	-1.572529000	-1.400207000	2.023096000
	-3.58/330000	-1.232878000	3.712531000
н	-5.269101000	0.395994000	2.832745000
н	-4.722386000	1.784265000	0.847398000
н	0.401322000	1.865/21000	-2.46/201000
н	-0.948334000	3.595538000	-3.690814000
н	-3.2/4/86000	4.115668000	-2.850066000
H	-4.141633000	2.907606000	-0.851096000
ir C	0.011369000	0.002760000	0.058361000
C	-0.332479000	-2.900475000	-0.589706000
C	-1.6424/3000	-1.593693000	-2.076486000
С	-0.786423000	-4.080077000	-1.217259000
С	0.586153000	-2.836098000	0.556098000
С	-2.122052000	-2.732362000	-2.731522000
Н	-1.949361000	-0.598954000	-2.374027000
С	-1.681352000	-3.998086000	-2.291919000
Н	-0.443834000	-5.045823000	-0.864972000
С	1.150025000	-3.988343000	1.150606000
С	0.892491000	-1.524734000	1.045382000

н	-2.817924000	-2.628563000	-3.556797000
н	-2.033838000	-4.902499000	-2.778768000
С	2.025895000	-3.860768000	2.239068000
н	0.912054000	-4.978936000	0.772058000
С	1.787241000	-1.427180000	2.138555000
С	2.343336000	-2.574547000	2.731433000
Н	2.458071000	-4.745471000	2.699537000
Н	2.036203000	-0.447900000	2.536462000
н	3.022728000	-2.471490000	3.575051000
С	2.640028000	1.208803000	-0.623838000
С	2.098196000	-0.548044000	-2.188575000
С	3.868805000	1.433938000	-1.330827000
С	2.206246000	1.870311000	0.555251000
С	3.290253000	-0.358947000	-2.883928000
н	1.392551000	-1.314280000	-2.492238000
С	4.199524000	0.677686000	-2.440960000
н	4.540158000	2.211958000	-0.979461000
С	0.889411000	1.468308000	1.090941000
С	2.947967000	2.903580000	1.226012000
н	3.523095000	-0.984526000	-3.739361000
н	5.129654000	0.851522000	-2.974574000
С	0.391138000	2.149834000	2.223187000
С	2.416020000	3.527986000	2.351553000
н	3.925763000	3.201421000	0.857132000
С	1.131050000	3.163062000	2.863778000
Н	-0.578826000	1.867946000	2.623498000
н	2.986299000	4.308581000	2.852161000
н	0.737193000	3.662412000	3.745582000
Ν	-1.080768000	1.468412000	-1.067394000
Ν	-0.767314000	-1.676338000	-1.043094000
Ν	1.739800000	0.202678000	-1.112904000
1c	_Z S ₀		
С	-0.372259000	1.994182000	-0.617433000
С	-1.099967000	-1.027688000	0.786626000
С	0.359139000	1.725656000	-1.661948000
Н	-0.018944000	1.882285000	-2.669188000
н	1.369016000	1.340144000	-1.561804000
С	1.079004000	-0.437869000	1.941909000
н	1.520221000	-0.171543000	2.899389000
С	-0.238288000	-0.680699000	1.956042000
н	-0.763931000	-0.618584000	2.904310000
С	-1.111802000	2.243003000	0.426035000
н	-1.089130000	3.231254000	0.881159000
С	2.021253000	-0.384841000	0.812364000
C	1.952886000	-1.230429000	-0.306208000
С	3.062152000	0.557331000	0.875184000
С	2.884567000	-1.117396000	-1.335109000

Н	1.181117000	-1.984364000	-0.360323000
С	3.981418000	0.679589000	-0.161596000
Н	3.136168000	1.206101000	1.741459000
С	3.895016000	-0.158708000	-1.273728000
Н	2.820538000	-1.783623000	-2.188199000
Н	4.767495000	1.423745000	-0.099831000
н	4.615342000	-0.072055000	-2.079267000
С	-2.038598000	1.252473000	1.091328000
H	-3.054893000	1.643251000	1.077949000
н	-1 753946000	1 130628000	2 135037000
N	-2.065085000	-0.069759000	0 444374000
C	-3 022175000	-0 226297000	-0 588571000
0	-2 72/02/000	0.220237000	-0.880883000
C C	2 17/022000	1 E402E1000	1 20255000
	-3.1/4623000	-1.549551000	-1.285550000
н	-2.289971000	-1.772326000	-1.881410000
н	-3.294593000	-2.36/121000	-0.572808000
Н	-4.049398000	-1.4/4832000	-1.928905000
0	-0.988146000	-2.095070000	0.208851000
10_	_Z S _o		
С	-0.693800000	2.078053000	-0.064626000
С	-2.216865000	-1.158732000	0.711586000
С	0.023296000	2.001238000	-1.149735000
Н	-0.271416000	2.524729000	-2.055880000
Н	0.939914000	1.422239000	-1.185191000
С	0.030214000	-1.162427000	1.877327000
Н	0.538607000	-1.204611000	2.836383000
С	-1.305254000	-1.207764000	1.900211000
H	-1.811951000	-1.324382000	2,853753000
C	-1 433711000	2 145774000	1 005143000
н	-1 260336000	2 935735000	1 733119000
C	0 92/963000	-1 029639000	0.715864000
c c	0.524505000	-1.023033000	-0 5/8697000
c	2 145464000	-1.308827000	0.948037000
C C	2.143404000	1 424407000	1 606727000
С Ц	1.333112000	-1.454407000	-1.000727000
	-0.277577000	-2.125120000	-0.700880000
C	3.010811000	-0.238226000	-0.175911000
Н	2.408232000	0.045046000	1.860652000
C	2.736338000	-0.760570000	-1.435696000
Н	1.293942000	-1.865557000	-2.570974000
Н	3.441656000	-0.646694000	-2.246158000
С	-2.577076000	1.215098000	1.330583000
Н	-3.511963000	1.776302000	1.326523000
Н	-2.449585000	0.812365000	2.333635000
Ν	-2.730480000	0.096189000	0.385784000
С	-3.429027000	0.387719000	-0.813970000
0	-3.970374000	1.471962000	-0.923372000
С	-3.442032000	-0.617166000	-1.930233000
Н	-2.451047000	-1.033921000	-2.109171000
-----	-------------------	--------------	--------------
Н	-4.105226000	-1.448695000	-1.687536000
Н	-3.805399000	-0.106186000	-2.821096000
0	-2.506583000	-2.178995000	0.110861000
Ν	4.285352000	0.478233000	0.029601000
0	5.027804000	0.627804000	-0.936445000
0	4.541279000	0.895537000	1.155331000
1y_	_Z S ₀		
С	1.436106000	1.557783000	-1.548921000
С	1.772371000	-0.897728000	0.547260000
С	0.655332000	2.371295000	-0.894875000
Н	1.021043000	3.321700000	-0.514444000
Н	-0.386474000	2.126797000	-0.708192000
С	-0.286526000	-2.005966000	-0.475052000
Н	-0.561551000	-2.850939000	-1.102146000
С	1.041264000	-1.895385000	-0.263290000
Н	1.672364000	-2.633387000	-0.747149000
С	2.223289000	0.731867000	-2.178793000
Н	2.317315000	0.793188000	-3.261292000
С	-1.440363000	-1.184804000	-0.117119000
С	-1.446216000	-0.118646000	0.807306000
С	-2.651247000	-1.477103000	-0.768104000
С	-2.593961000	0.614886000	1.043014000
Н	-0.549079000	0.120724000	1.356264000
С	-3.812572000	-0.745212000	-0.543849000
Н	-2.682069000	-2.295531000	-1.479448000
С	-3.786645000	0.314850000	0.367667000
Н	-2.591373000	1.428590000	1.758894000
Н	-4.717840000	-1.004759000	-1.075003000
С	3.045052000	-0.352735000	-1.520667000
Н	4.095843000	-0.212482000	-1.768484000
Н	2.744904000	-1.322744000	-1.915128000
Ν	2.934939000	-0.370935000	-0.054326000
С	3.920025000	0.346852000	0.653476000
0	4.738950000	1.004787000	0.032861000
С	3.989242000	0.235496000	2.152644000
Н	3.274209000	0.921739000	2.609469000
Н	3.754494000	-0.766373000	2.509532000
Н	4.998722000	0.520121000	2.449366000
0	1.432879000	-0.574873000	1.674476000
0	-4.854276000	1.094736000	0.668564000
С	-6.099708000	0.825822000	0.017239000
Н	-6.010818000	0.947630000	-1.066089000
Н	-6.455409000	-0.181984000	0.249843000
Н	-6.801939000	1.559424000	0.409458000

 $1c_E T_1$

С	1.613849000	2.022545000	1.173025000
С	1.162216000	-0.846562000	-0.071257000
С	1.449765000	1.735143000	2.433473000
Н	2.279630000	1.762017000	3.134781000
Н	0.474088000	1.457351000	2.824434000
С	-1.264141000	-0.843616000	0.180714000
Н	-1.111370000	-1.677179000	0.860168000
С	-0.174495000	-0.299304000	-0.388071000
Н	-0.266610000	0.534605000	-1.065453000
С	1.769125000	2.263464000	-0.098819000
Н	1.654930000	3.276510000	-0.479088000
С	-2.651458000	-0.430858000	-0.009544000
С	-3.026672000	0.661944000	-0.812280000
С	-3.660176000	-1.157845000	0.644811000
С	-4.363959000	1.007147000	-0.954963000
Н	-2.270263000	1.245596000	-1.322719000
С	-5.000586000	-0.811742000	0.499855000
Н	-3.381791000	-2.000326000	1.268721000
С	-5.356688000	0.271809000	-0.300919000
Н	-4.637535000	1.852715000	-1.575741000
Н	-5.764917000	-1.385499000	1.011256000
Н	-6.399309000	0.545426000	-0.415498000
С	2.106856000	1.215334000	-1.132963000
Н	3.047096000	1.478405000	-1.612465000
Н	1.348351000	1.197890000	-1.917053000
Ν	2.273671000	-0.137983000	-0.578832000
С	3.607460000	-0.584942000	-0.440745000
0	4.521489000	0.195029000	-0.654927000
С	3.891990000	-2.020956000	-0.094478000
Н	3.741187000	-2.188472000	0.972884000
Н	3.237847000	-2.711712000	-0.624729000
Н	4.935434000	-2.208679000	-0.347404000
0	1.300888000	-1.857795000	0.601513000
10_	_E T ₁		
С	2.546487000	1.493450000	1.767004000
С	2.053377000	-0.755502000	-0.359326000
С	2.207774000	0.841472000	2.843127000
Н	2.942358000	0.563927000	3.594365000
Н	1.175260000	0.552879000	3.024054000
С	-0.371516000	-0.516978000	-0.244326000
Н	-0.368382000	-1.501452000	0.213441000
С	0.808820000	0.013711000	-0.597956000
Н	0.863370000	0.993335000	-1.045323000
С	2.871960000	2.106559000	0.663301000
Н	2.868824000	3.193875000	0.622976000
С	-1.685351000	0.105418000	-0.398967000
С	-1.876296000	1.381989000	-0.959696000

С	-2.808102000	-0.606191000	0.040396000
С	-3.147952000	1.928256000	-1.079405000
Н	-1.024414000	1.954943000	-1.303782000
С	-4.069283000	-0.038268000	-0.089167000
Н	-2.697475000	-1.589293000	0.476764000
С	-4.266248000	1.221460000	-0.644116000
Н	-3.274645000	2.912388000	-1.513081000
Н	-5.261588000	1.633297000	-0.729699000
С	3.273441000	1.411725000	-0.616536000
Н	4.287664000	1.705059000	-0.878099000
Н	2.632348000	1.731487000	-1.439509000
Ν	3.266118000	-0.057808000	-0.526996000
С	4.534772000	-0.680631000	-0.454234000
0	5.531252000	0.012567000	-0.335624000
С	4.648534000	-2.174496000	-0.586569000
Н	4.384334000	-2.657480000	0.355301000
Н	3.984825000	-2.574090000	-1.352124000
Н	5.688509000	-2.394640000	-0.827057000
0	2.024355000	-1.930505000	-0.027529000
Ν	-5.238122000	-0.799410000	0.380095000
0	-6.349065000	-0.297035000	0.240334000
0	-5.046477000	-1.899471000	0.888934000
1y_	E T ₁		
С	2.446764000	2.013335000	1.228292000
С	1.980022000	-0.821067000	-0.039198000
С	2.310626000	1.707103000	2.487666000
Н	3.153690000	1.733066000	3.173083000
Н	1.346103000	1.412143000	2.893480000
С	-0.442716000	-0.833420000	0.235790000
Н	-0.269349000	-1.609919000	0.975770000
С	0.638939000	-0.316280000	-0.379451000
Н	0.532996000	0.464862000	-1.116118000
С	2.572031000	2.275708000	-0.042555000
Н	2.437151000	3.293597000	-0.402900000
С	-1.832827000	-0.464989000	0.029087000
С	-2.247313000	0.537006000	-0.874108000
С	-2.825545000	-1.132448000	0.761668000
С	-3.583291000	0.844522000	-1.032758000
Н	-1.513564000	1.081904000	-1.455692000
С	-4.176634000	-0.834361000	0.612922000
Н	-2.531197000	-1.904964000	1.463862000
С	-4.562516000	0.159775000	-0.291673000

1.614516000

-1.373122000

1.528324000

1.251428000 -1.102599000

1.251596000 -1.877441000

-1.726182000

1.197132000

-1.586646000

Н

Н

С

Н

Н

-3.899944000

-4.909489000

2.902223000

3.836331000

2.133973000

Ν	3.079654000	-0.113145000	-0.582026000
С	4.408430000	-0.578452000	-0.505133000
0	5.328374000	0.192553000	-0.731157000
С	4.681501000	-2.030487000	-0.216949000
Н	4.622940000	-2.217131000	0.856313000
Н	3.966188000	-2.693386000	-0.701474000
Н	5.693823000	-2.238758000	-0.563675000
0	2.147892000	-1.797784000	0.678433000
0	-5.844265000	0.532245000	-0.521451000
С	-6.888770000	-0.129974000	0.199991000
Н	-6.900018000	-1.201082000	-0.020651000
Н	-6.782050000	0.026855000	1.277097000
Н	-7.816734000	0.322997000	-0.144325000

1c TS1 T₁

С	0.488069000	1.771529000	1.081455000
С	1.410464000	-0.680310000	0.203972000
С	-0.524306000	1.624664000	1.940381000
Н	-0.358158000	1.227182000	2.937219000
Н	-1.547547000	1.823527000	1.641316000
С	-1.087766000	-0.791143000	0.398305000
Н	-0.934791000	-1.531424000	1.173613000
С	0.107772000	-0.188130000	-0.170222000
н	0.022981000	0.430596000	-1.052146000
С	1.531223000	2.223064000	0.436198000
Н	1.877272000	3.230729000	0.660768000
С	-2.403171000	-0.509566000	-0.009608000
С	-2.725897000	0.453826000	-1.014005000
С	-3.492252000	-1.197855000	0.609450000
С	-4.042033000	0.699851000	-1.364467000
Н	-1.935407000	1.005806000	-1.506343000
С	-4.799885000	-0.941148000	0.248806000
Н	-3.270988000	-1.932870000	1.375707000
С	-5.090670000	0.010219000	-0.742127000
Н	-4.262402000	1.436275000	-2.129402000
Н	-5.607480000	-1.477977000	0.733961000
н	-6.117985000	0.209262000	-1.023283000
С	2.298509000	1.482472000	-0.634545000
Н	3.283816000	1.923223000	-0.750365000
н	1.784387000	1.582064000	-1.597091000
Ν	2.505891000	0.060094000	-0.320736000
С	3.794674000	-0.453991000	-0.474714000
0	4.719262000	0.286116000	-0.788551000
С	4.018866000	-1.934606000	-0.305577000
н	4.101161000	-2.181702000	0.754060000
Н	3.204503000	-2.530006000	-0.716593000
Н	4.956341000	-2.178121000	-0.805069000
0	1.575922000	-1.644926000	0.954675000

$1c_{TS1}S_0$

С	0.148261000	1.621221000	0.789200000
С	1.474789000	-0.694553000	0.196041000
С	-1.034665000	2.014444000	1.292170000
Н	-1.257920000	3.073331000	1.374719000
Н	-1.798949000	1.316735000	1.603118000
С	-0.977767000	-0.842127000	0.348776000
Н	-0.796467000	-1.625369000	1.075788000
С	0.122940000	-0.081362000	-0.073895000
Н	0.056946000	0.383006000	-1.055055000
С	1.419728000	2.061376000	0.653590000
Н	1.881555000	2.628773000	1.455536000
С	-2.329640000	-0.585391000	-0.019660000
С	-2.693391000	0.468960000	-0.893842000
С	-3.367170000	-1.371861000	0.543205000
С	-4.030321000	0.715932000	-1.186069000
Н	-1.927886000	1.078198000	-1.355195000
С	-4.693951000	-1.120929000	0.242591000
Н	-3.102559000	-2.176267000	1.220866000
С	-5.033327000	-0.072317000	-0.623224000
Н	-4.291410000	1.526247000	-1.857212000
Н	-5.473217000	-1.733975000	0.680882000
Н	-6.073686000	0.123242000	-0.856267000
С	2.304725000	1.540320000	-0.438479000
Н	3.272816000	2.029009000	-0.429079000
Н	1.868570000	1.676629000	-1.432010000
Ν	2.556738000	0.087604000	-0.221758000
С	3.874958000	-0.375694000	-0.383501000
0	4.755722000	0.417768000	-0.675233000
С	4.167795000	-1.844045000	-0.236596000
Н	4.116854000	-2.137607000	0.812975000
Н	3.448845000	-2.459519000	-0.777411000
Н	5.174484000	-2.013407000	-0.616927000
0	1.605161000	-1.781031000	0.730952000
10_	_TS1 T ₁		
С	-1.563359000	-1.583562000	1.432543000
С	-2.241400000	0.721506000	0.005123000
С	-0.462442000	-1.375052000	2.158060000
Н	-0.472640000	-0.698663000	3.007556000
Н	0.484736000	-1.826602000	1.883148000
С	0.254466000	0.519978000	0.096060000
Н	0.247558000	1.419621000	0.698119000
С	-1.039340000	-0.024190000	-0.281989000
Н	-1.088325000	-0.846444000	-0.980796000
С	-2.709214000	-2.002407000	0.967469000

H -3.184984000 -2.844674000

1.467047000

С	1.494845000	-0.014627000	-0.292450000
С	1.640048000	-1.190853000	-1.091277000
С	2.686498000	0.634619000	0.138309000
С	2.892359000	-1.676144000	-1.429412000
Н	0.760480000	-1.716899000	-1.438430000
С	3.913206000	0.119918000	-0.218103000
Н	2.624993000	1.527886000	0.744394000
С	4.056026000	-1.034420000	-1.002007000
Н	2.974565000	-2.569935000	-2.036176000
Н	5.036496000	-1.405626000	-1.260725000
С	-3.440239000	-1.438840000	-0.230994000
Н	-4.477370000	-1.757579000	-0.208201000
Н	-3.001104000	-1.829036000	-1.155459000
Ν	-3.453125000	0.032461000	-0.263527000
С	-4.686148000	0.663742000	-0.459041000
0	-5.712144000	-0.001053000	-0.519461000
С	-4.722855000	2.157467000	-0.650592000
Н	-4.673280000	2.659851000	0.316783000
Н	-3.889233000	2.521737000	-1.249863000
Н	-5.670402000	2.397739000	-1.132278000
0	-2.225585000	1.855889000	0.486771000
Ν	5.126009000	0.813483000	0.247112000
0	4.996368000	1.824627000	0.931064000
0	6.214310000	0.343562000	-0.072175000
<u> </u>			
U			
10	_TS1 S ₀		
10_ C	_TS1 S₀ 1.249887000	1.630743000	0.968856000
10 <u></u> C C	_TS1 S₀ 1.249887000 2.278117000	1.630743000 -0.746483000	0.968856000 0.062686000
10 <u></u> C C C	_TS1 S₀ 1.249887000 2.278117000 0.107018000	1.630743000 -0.746483000 2.111292000	0.968856000 0.062686000 1.487644000
10 <u></u> C C C H	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000	1.630743000 -0.746483000 2.111292000 3.168647000	0.968856000 0.062686000 1.487644000 1.717496000
10 C C C H H	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000
10 C C C H H C	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000
10 ₋ C C H H C H	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000
10 C C C H H C H C H C	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000
10 C C H H C H C H	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000
10 <u></u> C C H H C H C H C H C H C	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000
10 ₋ СССН НСНСН С	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000 3.065580000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000 2.270934000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000 1.832602000
10 C C C H H C H C H C H C H C H C H C C C C H H C	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000 3.065580000 -1.450844000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000 2.270934000 -0.026473000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000 1.832602000 -0.259818000
10 C C C H H C H C H C H C C C C H H C H C	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000 3.065580000 -1.450844000 -1.604061000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000 2.270934000 -0.026473000 1.208135000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000 1.832602000 -0.259818000 -0.939719000
10 С С С Н Н С Н С Н С С С Н Н С Н С С С С Н Н С С С С С С С С С С С С С С С С	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000 3.065580000 -1.450844000 -1.604061000 -2.619473000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000 2.270934000 -0.026473000 1.208135000 -0.724545000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000 1.832602000 -0.259818000 -0.939719000 0.119987000
10 СССННСНСНСССС 10 СССННСНСНСССС	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000 3.065580000 -1.450844000 -1.604061000 -2.619473000 -2.868270000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000 2.270934000 -0.026473000 1.208135000 -0.724545000 1.717258000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000 1.832602000 -0.259818000 -0.939719000 0.119987000 -1.223579000
10- СССННСНСНССССН	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000 3.065580000 -1.450844000 -1.604061000 -2.619473000 -2.868270000 -0.731589000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000 2.270934000 -0.026473000 1.208135000 -0.724545000 1.717258000 1.757218000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000 1.832602000 -0.259818000 -0.939719000 0.119987000 -1.223579000 -1.265259000
10 ⁻ СССННСНСНССССНС	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000 3.065580000 -1.450844000 -1.604061000 -2.619473000 -2.868270000 -0.731589000 -3.857696000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000 2.270934000 -0.026473000 1.208135000 -0.724545000 1.717258000 1.757218000 -0.193030000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000 1.832602000 -0.259818000 -0.259818000 -0.39719000 0.119987000 -1.223579000 -1.265259000 -0.181511000
10 СССННСНСНССССНСН	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000 3.065580000 -1.450844000 -1.604061000 -2.619473000 -2.868270000 -0.731589000 -3.857696000 -2.541927000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000 2.270934000 -0.026473000 1.208135000 -0.724545000 1.717258000 1.757218000 -0.193030000 -1.664993000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000 1.832602000 -0.259818000 -0.259818000 -0.259818000 -0.259818000 -1.223579000 -1.265259000 -0.181511000 0.647855000
10 СССННСНСНССССНСНС	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000 3.065580000 -1.450844000 -1.604061000 -2.619473000 -2.868270000 -0.731589000 -3.857696000 -2.541927000 -4.013638000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000 2.270934000 -0.026473000 1.208135000 -0.724545000 1.717258000 1.757218000 -0.193030000 -1.664993000 1.026948000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000 1.832602000 -0.259818000 -0.259818000 -0.939719000 0.119987000 -1.223579000 -1.265259000 -0.181511000 0.647855000 -0.848282000
10 ⁻ СССННСНСНССССНСНСН	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000 3.065580000 -1.450844000 -1.604061000 -2.619473000 -2.868270000 -2.868270000 -3.857696000 -2.541927000 -4.013638000 -2.962518000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000 2.270934000 -0.026473000 1.208135000 -0.724545000 1.717258000 1.757218000 -0.193030000 -0.193030000 -1.664993000 1.026948000 2.661621000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000 1.832602000 -0.259818000 -0.259818000 -0.259818000 -0.39719000 0.119987000 -1.265259000 -1.265259000 -0.181511000 0.647855000 -0.848282000 -1.745428000
10 0 СССННСНСНССССНСНСН Н	_TS1 S ₀ 1.249887000 2.278117000 0.107018000 0.023444000 -0.755966000 -0.177460000 -0.158441000 1.039917000 1.092843000 2.574484000 3.065580000 -1.450844000 -1.604061000 -2.619473000 -2.619473000 -2.868270000 -3.857696000 -2.541927000 -4.013638000 -2.962518000 -5.000615000	1.630743000 -0.746483000 2.111292000 3.168647000 1.488940000 -0.553506000 -1.462286000 0.091631000 0.708379000 1.893725000 2.270934000 -0.026473000 1.208135000 -0.724545000 1.717258000 1.717258000 1.757218000 -0.193030000 -1.664993000 1.026948000 2.661621000 1.409152000	0.968856000 0.062686000 1.487644000 1.717496000 1.677129000 0.105252000 0.694674000 -0.151477000 -1.045572000 0.940888000 1.832602000 -0.259818000 -0.259818000 -0.259818000 -1.265259000 -1.265259000 -0.181511000 0.647855000 -0.848282000 -1.745428000 -1.745428000 -1.065055000

Н	4.460344000	1.756452000	-0.074289000
Н	3.074547000	1.752316000	-1.162077000
Ν	3.479253000	-0.073623000	-0.179024000
С	4.736323000	-0.690023000	-0.337382000
0	5.730111000	0.007019000	-0.459496000
С	4.823109000	-2.190238000	-0.393467000
Н	4.640447000	-2.618443000	0.593219000
Н	4.081339000	-2.615074000	-1.070024000
Н	5.829051000	-2.444748000	-0.724990000
0	2.220889000	-1.911673000	0.410596000
Ν	-5.061527000	-0.937744000	0.222904000
0	-4.916395000	-2.028209000	0.766890000
0	-6.155963000	-0.430643000	-0.004260000

1y_TS1 T₁

	1		
C	1.295455000	1.679820000	1.165352000
С	2.204606000	-0.692936000	0.180081000
С	0.386567000	1.515348000	2.131469000
Н	0.689425000	1.264419000	3.143946000
Н	-0.675493000	1.533911000	1.914938000
С	-0.284293000	-0.869775000	0.420856000
Н	-0.102541000	-1.687047000	1.107481000
С	0.881381000	-0.206298000	-0.130025000
Н	0.763042000	0.439870000	-0.988578000
С	2.262466000	2.202006000	0.451133000
Н	2.515280000	3.249318000	0.609921000
С	-1.610067000	-0.537845000	0.107364000
С	-1.972707000	0.546681000	-0.755726000
С	-2.686495000	-1.284716000	0.677511000
С	-3.290124000	0.843613000	-1.016870000
Н	-1.201256000	1.154915000	-1.210110000
С	-4.008409000	-0.987337000	0.414923000
Н	-2.448957000	-2.111674000	1.337643000
С	-4.326997000	0.084856000	-0.439538000
Н	-3.554324000	1.667281000	-1.670059000
Н	-4.788689000	-1.582498000	0.869447000
С	3.040374000	1.502519000	-0.634791000
Н	4.018398000	1.963780000	-0.738100000
Н	2.527464000	1.624831000	-1.596736000
Ν	3.272294000	0.075941000	-0.363939000
С	4.555807000	-0.420129000	-0.591422000
0	5.457533000	0.337556000	-0.931755000
С	4.804500000	-1.901540000	-0.467910000
Н	4.929108000	-2.175003000	0.580979000
Н	3.982207000	-2.496729000	-0.863373000
Н	5.725132000	-2.120240000	-1.008582000
0	2.411300000	-1.678648000	0.892253000
0	-5.588028000	0.459709000	-0.762846000

С	-6.685992000	-0.281467000	-0.219241000
Н	-6.652307000	-1.325332000	-0.543184000
Н	-6.691824000	-0.230345000	0.873095000
Н	-7.583604000	0.193224000	-0.611366000
10	_TS1 S ₀		
С	0.981234000	1.623134000	0.844819000
С	2.246554000	-0.701094000	0.201522000
С	-0.174862000	2.030395000	1.401211000
Н	-0.382768000	3.091703000	1.490883000
Н	-0.929977000	1.341461000	1.751618000
С	-0.201006000	-0.812394000	0.437868000
Н	-0.007584000	-1.605213000	1.151510000
С	0.898859000	-0.064166000	-0.015103000
Н	0.805955000	0.401480000	-0.993568000
С	2.248877000	2.056423000	0.653224000
Н	2.746269000	2.626843000	1.431092000
С	-1.553422000	-0.531921000	0.117950000
С	-1.936989000	0.530617000	-0.744872000
С	-2.589863000	-1.297368000	0.707423000
С	-3.268110000	0.796075000	-0.999899000
Н	-1.181103000	1.132364000	-1.230918000
С	-3.923472000	-1.038642000	0.454798000
Н	-2.323009000	-2.107289000	1.377485000
С	-4.273074000	0.018257000	-0.405794000
Н	-3.558041000	1.603650000	-1.661438000
Н	-4.684470000	-1.647259000	0.923010000
С	3.085823000	1.521097000	-0.469080000
Н	4.062261000	1.992628000	-0.492922000
Н	2.620794000	1.664393000	-1.448677000
Ν	3.322552000	0.061786000	-0.265941000
С	4.621852000	-0.424650000	-0.487396000
0	5.503171000	0.351519000	-0.823084000
С	4.895953000	-1.897987000	-0.349445000
Н	4.895725000	-2.186175000	0.702898000
Н	4.138561000	-2.502959000	-0.847923000
Н	5.878035000	-2.087044000	-0.781454000
0	2.382921000	-1.785726000	0.740412000
0	-5.544609000	0.352760000	-0.719164000
С	-6.618812000	-0.422603000	-0.172770000
Н	-6.549468000	-1.466009000	-0.492002000
Н	-6.627842000	-0.365427000	0.919010000
Н	-7.530312000	0.020897000	-0.569058000
1c_	intermediate T ₁		

С	0.327200000	1.547625000	0.744769000
С	1.400326000	-0.649952000	0.174994000
С	-0.570804000	2.083656000	1.642993000

Н	-0.386041000	3.060405000	2.075698000
Н	-1.468640000	1.557464000	1.937087000
С	-1.064746000	-0.600477000	0.578650000
Н	-0.884861000	-1.325407000	1.362515000
С	0.108853000	0.175194000	0.083970000
Н	-0.012462000	0.380180000	-0.989669000
С	1.495362000	2.179101000	0.339965000
Н	1.749641000	3.175315000	0.681133000
С	-2.384404000	-0.441925000	0.107783000
С	-2.747990000	0.501913000	-0.895217000
С	-3.426465000	-1.247319000	0.653663000
С	-4.061587000	0.619300000	-1.319694000
н	-1.991957000	1.145796000	-1.327428000
С	-4.734469000	-1.119924000	0.220829000
Н	-3.174607000	-1.971637000	1.420870000
С	-5.065844000	-0.186802000	-0.770431000
Н	-4.313129000	1.346486000	-2.083966000
Н	-5.506958000	-1.747145000	0.652032000
н	-6.090914000	-0.088299000	-1.107945000
C	2,413957000	1,473476000	-0.597314000
н	3,411173000	1.900824000	-0.576333000
н	2,055981000	1.540801000	-1.635051000
N	2.544446000	0.037906000	-0.236173000
C	3 824319000	-0 536774000	-0 396801000
0	4 722323000	0 146358000	-0.860837000
c	4.059027000	-1 965954000	0.002932000
н	3 818145000	-2 126184000	1 054250000
н	3 426934000	-2 642284000	-0 574214000
н	5 109728000	-2 185113000	-0 183026000
\cap	1 /03982000	-1 805529000	0.550925000
0	1.403302000	1.005525000	0.550525000
1c_	_intermediate S ₀		
С	0.264488000	1.487503000	0.725526000
С	1.426997000	-0.665280000	0.129958000
С	-0.695363000	1.988074000	1.581929000
Н	-0.552924000	2.960384000	2.040103000
Н	-1.598180000	1.443169000	1.817585000
С	-1.044767000	-0.702109000	0.476759000
Н	-0.840422000	-1.513177000	1.163645000
С	0.113145000	0.123878000	0.029000000
Н	0.009874000	0.349822000	-1.043820000
С	1.437228000	2.153765000	0.404527000
Н	1.663774000	3.129619000	0.816823000
С	-2.376189000	-0.490693000	0.064306000
С	-2.756663000	0.551062000	-0.829430000
С	-3.411402000	-1.334712000	0.562549000
С	-4.082246000	0.726357000	-1.194869000
н	-2.003721000	1.219608000	-1.227926000

С	-4.730446000	-1.148628000	0.189852000
Н	-3.145450000	-2.134346000	1.245561000
С	-5.079551000	-0.116789000	-0.692230000
н	-4.347439000	1.527499000	-1.876040000
н	-5.498321000	-1.805776000	0.583014000
н	-6.113739000	0.027283000	-0.982319000
С	2.412267000	1.512312000	-0.521778000
Н	3.396136000	1.962267000	-0.438654000
н	2.098086000	1.615804000	-1.570209000
N	2 564482000	0.066101000	-0.216096000
c	3 861930000	-0 471813000	-0.363498000
0	4 753557000	0.249265000	-0 779716000
c	4.733337000	-1 907952000	-0.007456000
	4.123423000	-1.907932000	1 020840000
п	3.850350000	-2.112089000	1.029840000
н	3.52/380000	-2.5/9/58000	-0.626530000
Н	5.184694000	-2.092815000	-0.169077000
0	1.4508/1000	-1.835521000	0.457191000
10	intermediate T ₁		
C	1.433089000	1.522566000	0.953167000
c	2 213342000	-0 686292000	0.041860000
c	0 568923000	2 026425000	1 901714000
н	0.865622000	2.825541000	2 506777000
н	-0 /10353000	1 599623000	2.07061/000
C II	-0.410555000	-0.22751/000	0.364701000
с ц	-0.233002000	1 10227514000	1.015464000
п С	1 062760000	-1.1922/5000	1.015404000
	1.005700000	0.551550000	0.051667000
п С	1.038246000	0.730769000	-0.972455000
C 	2.702371000	2.02/584000	0.706166000
Н	3.077051000	2.899697000	1.228033000
C	-1.486226000	0.115568000	-0.11109/000
С	-1.650028000	1.255529000	-0.949542000
С	-2.658635000	-0.593485000	0.263804000
С	-2.903452000	1.652395000	-1.387202000
Н	-0.781498000	1.828462000	-1.247989000
С	-3.890941000	-0.167551000	-0.191217000
Н	-2.583673000	-1.463042000	0.901778000
С	-4.050402000	0.948748000	-1.017505000
Н	-2.998910000	2.523501000	-2.024104000
Н	-5.032134000	1.250053000	-1.351982000
С	3.563417000	1.357373000	-0.308381000
н	4.608461000	1.620399000	-0.181587000
н	3.278880000	1.649320000	-1.329853000
Ν	3.466094000	-0.121561000	-0.197403000
С	4.659960000	-0.849398000	-0.403355000
0	5.674183000	-0.242485000	-0.703208000
C	4.659827000	-2.343941000	-0.250957000
H	4.327833000	-2.638916000	0.744948000
-			

Н	3.978022000	-2.809895000	-0.963693000
Н	5.678362000	-2.687218000	-0.427652000
0	2.021816000	-1.875130000	0.204876000
Ν	-5.088872000	-0.924548000	0.212540000
0	-6.179845000	-0.538632000	-0.196693000
0	-4.942751000	-1.903819000	0.937641000
10	_intermediate S ₀		
С	1.385454000	1.507192000	0.886514000
С	2.232979000	-0.696634000	0.002896000
С	0.477702000	2.020437000	1.790388000
Н	0.745954000	2.882428000	2.390648000
Н	-0.504419000	1.592081000	1.930922000
С	-0.226218000	-0.388325000	0.276650000
Н	-0.186347000	-1.320326000	0.824793000
С	1.063441000	0.299605000	-0.010652000
Н	1.048324000	0.692090000	-1.039377000
С	2.658043000	2.021325000	0.688747000
Н	3.013346000	2.880346000	1.244821000
С	-1.487138000	0.098165000	-0.124883000
С	-1.665904000	1.315763000	-0.842353000
С	-2.652335000	-0.643130000	0.206884000
С	-2.929111000	1.756464000	-1.206414000
Н	-0.802830000	1.912620000	-1.107111000
С	-3.893362000	-0.172781000	-0.173195000
Н	-2.564483000	-1.571975000	0.753091000
С	-4.068389000	1.021151000	-0.880198000
Н	-3.037196000	2.686643000	-1.751072000
Н	-5.057153000	1.354614000	-1.158858000
С	3.559899000	1.368837000	-0.302141000
Н	4.596109000	1.648622000	-0.143753000
Н	3.301063000	1.656462000	-1.331039000
Ν	3.482835000	-0.111339000	-0.193326000
С	4.695480000	-0.819477000	-0.355168000
0	5.705675000	-0.197657000	-0.637269000
С	4.720896000	-2.310362000	-0.172401000
Н	4.344298000	-2.594932000	0.810523000
Н	4.087572000	-2.804698000	-0.910342000
Н	5.754474000	-2.633143000	-0.290950000
0	2.056306000	-1.890788000	0.143415000
Ν	-5.083851000	-0.965007000	0.180882000
0	-6.181019000	-0.548933000	-0.179416000
0	-4.925990000	-2.002097000	0.817867000
1y_	intermediate T_1		

-		
1.177758000	1.535525000	0.793599000
2.179064000	-0.673892000	0.153938000
0.345472000	2.074330000	1.751295000
	1.177758000 2.179064000 0.345472000	1.1777580001.5355250002.179064000-0.6738920000.3454720002.074330000

Н	0.571487000	3.043194000	2.182302000
Н	-0.540163000	1.556947000	2.093975000
С	-0.266860000	-0.586377000	0.671683000
Н	-0.064136000	-1.345841000	1.416054000
С	0.898803000	0.172763000	0.134022000
Н	0.734848000	0.391500000	-0.931874000
С	2.328847000	2.154057000	0.324044000
H	2.622032000	3.141872000	0.658388000
C	-1.603112000	-0.369278000	0.284445000
c	-1 997204000	0 623874000	-0 662043000
c	-2 646407000	-1 153485000	0.851609000
c	-3 319426000	0 802158000	-1 008769000
ц	-1 2/0222000	1 261205000	-1 116812000
C II	2 075702000	0.076242000	0 50/010000
	-3.973793000	1 017025000	1 576016000
	-2.380384000	-1.91/025000	1.576916000
	-4.326005000	0.000088000	-0.433088000
н	-3.6061/8000	1.561097000	-1./2//2/000
Н	-4./31431000	-1.600615000	0.962263000
C	3.1/5/46000	1.436103000	-0.669886000
Н	4.177006000	1.851070000	-0.718471000
Н	2.748603000	1.501542000	-1.681158000
Ν	3.312005000	0.000564000	-0.310058000
С	4.580974000	-0.583191000	-0.512153000
0	5.467317000	0.089478000	-1.013029000
С	4.821014000	-2.010855000	-0.108994000
Н	4.610574000	-2.162766000	0.950072000
Н	4.169064000	-2.688305000	-0.662144000
Н	5.864746000	-2.236414000	-0.324221000
0	2.185231000	-1.832035000	0.521750000
0	-5.596766000	0.263889000	-0.842741000
С	-6.659739000	-0.520450000	-0.295603000
Н	-6.533053000	-1.579830000	-0.537835000
Н	-6.725446000	-0.394182000	0.789150000
Н	-7.571219000	-0.148016000	-0.760366000
1.,	intermediate C		
		1 409045000	0 772040000
C C	1.116909000	1.496045000	0.775940000
C	2.199116000	-0.680211000	0.125451000
C	0.218011000	2.018102000	1.681193000
н	0.402195000	2.988551000	2.128407000
Н	-0.680001000	1.488627000	1.965705000
С	-0.255611000	-0.662669000	0.591793000
Н	-0.039058000	-1.483646000	1.262776000
С	0.899422000	0.136763000	0.090668000
Н	0.751193000	0.366514000	-0.976252000
С	2.284796000	2.139440000	0.383999000
Н	2.558297000	3.109723000	0.780725000
С	-1.596169000	-0.416159000	0.240141000

С	-1.997025000	0.642376000	-0.629519000
С	-2.635655000	-1.232755000	0.767273000
С	-3.323744000	0.852596000	-0.941621000
Н	-1.250888000	1.301026000	-1.055980000
С	-3.968351000	-1.023705000	0.455335000
Н	-2.369718000	-2.046498000	1.433350000
С	-4.326062000	0.025564000	-0.406169000
Н	-3.615963000	1.659926000	-1.603386000
Н	-4.721312000	-1.674054000	0.879518000
С	3.187552000	1.472259000	-0.596643000
Н	4.182660000	1.904251000	-0.582331000
Н	2.807699000	1.569597000	-1.623594000
Ν	3.332277000	0.026610000	-0.284079000
С	4.613614000	-0.532994000	-0.477780000
0	5.499790000	0.168404000	-0.937817000
С	4.867323000	-1.969246000	-0.115608000
Н	4.635405000	-2.159073000	0.932758000
Н	4.239275000	-2.638204000	-0.705493000
Н	5.919162000	-2.171489000	-0.313973000
0	2.217657000	-1.849268000	0.457271000
0	-5.601001000	0.317394000	-0.776578000
С	-6.660612000	-0.501591000	-0.275233000
Н	-6.541406000	-1.540319000	-0.597246000
Н	-6.712050000	-0.455969000	0.816587000
н	-7.576081000	-0.092361000	-0.699357000
1c_	_TS2 T ₁		
С	-0.577562000	1.760470000	0.531091000
С	-1.283144000	-0.386708000	-0.574784000
С	0.714600000	2.375369000	0.569841000
Н	0.898812000	3.345954000	0.114800000
Н	1.380210000	2.110646000	1.384034000
С	1.073475000	0.695803000	-0.398195000
Н	0.915097000	1.060482000	-1.410042000
С	-0.210501000	0.315627000	0.295012000
Н	-0.056449000	-0.266998000	1.208959000
С	-1.792260000	2.260684000	0.175374000
Н	-1.967758000	3.331281000	0.144874000
С	2.376439000	0.124174000	-0.150358000
С	2.665656000	-0.646604000	0.997000000
С	3.408111000	0.344818000	-1.092375000
С	3.924610000	-1.201972000	1.171259000
Н	1.902481000	-0.807550000	1.748250000
С	4.665707000	-0.207599000	-0.908720000
Н	3.196979000	0.941710000	-1.972756000
С	4.930443000	-0.985283000	0.223551000
Н	4.131224000	-1.801219000	2.050468000
Н	5.443116000	-0.039422000	-1.644978000

Н	5.914909000	-1.414292000	0.369647000
С	-2.946802000	1.381145000	-0.137541000
Н	-3.365973000	1.669940000	-1.111425000
Н	-3.748886000	1.556873000	0.587809000
Ν	-2.606848000	-0.040417000	-0.113879000
С	-3.644303000	-0.926775000	0.078558000
0	-4.817017000	-0.530937000	0.110862000
С	-3.310451000	-2.385296000	0.272168000
Н	-3.197133000	-2.881419000	-0.694462000
Н	-2.381633000	-2.530177000	0.822752000
Н	-4.141312000	-2.844348000	0.809144000
0	-1.012964000	-1.501020000	-1.101013000
1c_	_TS2 S1		
С	0.661330000	2.084131000	-0.214904000
С	1.177853000	-0.424596000	-0.559380000
С	-0.472050000	2.911023000	0.011512000
Н	-0.397335000	3.828903000	0.587091000
Н	-1.358206000	2.782359000	-0.596064000
С	-0.898921000	0.548688000	0.471061000
Н	-0.536566000	0.594317000	1.492243000
С	0.171794000	0.715904000	-0.586952000
Н	-0.269418000	0.712747000	-1.586397000
С	1.944465000	2.291034000	0.141454000
Н	2.263814000	3.237809000	0.564013000
С	-2.216917000	0.037650000	0.261389000
С	-2.748607000	-0.227040000	-1.022885000
С	-3.053223000	-0.191571000	1.382965000
С	-4.048093000	-0.693054000	-1.171052000
Н	-2.137540000	-0.073604000	-1.903123000
С	-4.348745000	-0.657282000	1.226238000
Н	-2.661577000	0.004759000	2.375259000
С	-4.856773000	-0.910315000	-0.052707000
Н	-4.434575000	-0.892820000	-2.164222000
Н	-4.969086000	-0.828216000	2.098938000
Н	-5.869660000	-1.276121000	-0.174724000
С	2.991805000	1.239566000	0.001027000
Н	3.668315000	1.272796000	0.854512000
Н	3.615189000	1.408243000	-0.885875000
Ν	2.455417000	-0.145290000	-0.071144000
С	3.405882000	-1.152652000	0.212769000
0	4.576071000	-0.834669000	0.340084000
С	2.956050000	-2.572452000	0.423513000
Н	2.007787000	-2.634351000	0.955782000
Н	2.822854000	-3.069945000	-0.538591000
Н	3.743482000	-3.077829000	0.982830000
0	0.840115000	-1.536108000	-0.928579000

10	TS2 T ₁		
С	-1.480257000	1.863382000	0.485874000
С	-2.137954000	-0.560423000	0.016295000
С	-0.164389000	2.459942000	0.520620000
Н	0.111303000	3.273430000	-0.143594000
Н	0.411122000	2.376208000	1.435393000
С	0.178252000	0.557396000	-0.067465000
н	0.083119000	0.694192000	-1.140174000
С	-1.156202000	0.407901000	0.651492000
н	-1.038728000	0.102941000	1.694560000
С	-2.639148000	2.283596000	-0.041182000
Н	-2.795558000	3.318178000	-0.325620000
С	1.454455000	0.122849000	0.396544000
С	1.674963000	-0.328899000	1.741107000
С	2.527927000	0.175132000	-0.514660000
С	2.942462000	-0.748730000	2.107479000
н	0.862301000	-0.347938000	2.453376000
С	3.799913000	-0.243748000	-0.130113000
н	2.365931000	0.528080000	-1.523525000
С	4.006628000	-0.716643000	1.205823000
Н	3.120054000	-1.106607000	3.114915000
С	-3.779932000	1.354964000	-0.242695000
Н	-4.214605000	1.534775000	-1.229291000
Н	-4.576819000	1.565509000	0.477981000
Ν	-3.438421000	-0.089528000	-0.156484000
С	-4.544275000	-0.947390000	-0.397610000
0	-5.597681000	-0.442299000	-0.737447000
С	-4.411748000	-2.426293000	-0.170282000
Н	-3.934938000	-2.895952000	-1.032784000
Н	-3.809045000	-2.662179000	0.705706000
Н	-5.419866000	-2.824349000	-0.057635000
0	-1.783562000	-1.686845000	-0.266303000
Н	4.995936000	-1.039523000	1.494682000
Ν	4.856880000	-0.202947000	-1.034499000
0	4.655348000	0.226926000	-2.223997000
0	6.011695000	-0.596238000	-0.641562000
10	TS2 S.		
C.	-1.682172000	2,112592000	-0.065625000
C	-2.091867000	-0.348276000	0.613846000
c	-0 581025000	2 993726000	-0 240101000
н	-0 601144000	3 786180000	-0.982270000
н	0.182433000	3 055058000	0 524428000
C	0.075872000	0.647415000	-0.187564000
н	-0.083510000	0.486980000	-1.247934000
C	-1.185184000	0.874203000	0.618885000
н	-0.947294000	1.072706000	1.666426000

C -2.889863000 2.141493000 -0.661580000

Н	-3.185681000	2.973823000	-1.291242000
С	1.364635000	0.321286000	0.337978000
С	1.667127000	0.309505000	1.721073000
С	2.408695000	0.021826000	-0.566320000
С	2.947723000	0.020416000	2.174768000
Н	0.890794000	0.520281000	2.444615000
С	3.672750000	-0.261080000	-0.082303000
Н	2,219860000	0.017339000	-1.630832000
C	3 975411000	-0 268058000	1 280535000
н	3 151534000	0.014288000	3 238590000
н	4 975155000	-0.496275000	1 619973000
Ċ	-3 881488000	1 040328000	-0 507912000
ц	-4 200562000	0.866440000	-0.307312000
	-4.390302000	1 207416000	-1.433072000
	-4.005245000	1.507410000	0.211284000
	-3.293382000	-0.259304000	-0.087846000
C	-4.141819000	-1.3/2036000	-0.308189000
0	-5.288622000	-1.166861000	-0.665766000
C	-3.606314000	-2.769526000	-0.165165000
Н	-2.597163000	-2.868772000	-0.563299000
Н	-3.568225000	-3.052276000	0.888070000
Н	-4.293630000	-3.431046000	-0.692435000
0	-1.735068000	-1.358773000	1.194678000
Ν	4.742904000	-0.568726000	-1.046411000
0	5.871522000	-0.773090000	-0.609565000
0	4.458560000	-0.606129000	-2.239830000
1y_	TS2 T ₁		
C	-1.432723000	1.906093000	0.273654000
С	-2.003207000	-0.527100000	-0.151978000
С	-0.133167000	2.522776000	-0.059084000
Н	-0.076121000	3.279257000	-0.839077000
Н	0.540698000	2.702784000	0.775458000
C	0.245354000	0.710275000	-0.516748000
н	0.006216000	0.756903000	-1.578574000
C	-0 993467000	0 471884000	0 357822000
н	-0 728258000	0.177837000	1 378843000
C	-2 710832000	2 251630000	0 179819000
н	-3 033992000	3 267993000	-0.018186000
C	1 5/0007000	0.264850000	-0.222000000
c	1.049907000	0.204839000	1 050151000
C C	2,622842000	-0.239089000	1.039131000
C C	2.052645000	0.556417000	-1.219621000
	3.249044000	-0.598664000	1.304519000
Н	1.219156000	-0.411291000	1.833629000
	3.932629000	0.1/3/66000	-0.964303000
Н	2.360938000	0.999883000	-2.160811000
C	4.2/19/5000	-0.415166000	0.266916000
H	3.559206000	-1.01/829000	2.253951000
Н	4.696422000	0.352634000	-1./10874000

С	-3.783225000	1.219585000	0.346519000
Н	-4.615033000	1.438579000	-0.322412000
Н	-4.194969000	1.235335000	1.361655000
Ν	-3.347912000	-0.175138000	0.042009000
С	-4.412804000	-1.098016000	-0.034959000
0	-5.553660000	-0.684726000	0.099301000
С	-4.138684000	-2.563784000	-0.232639000
Н	-3.794037000	-2.756377000	-1.249389000
Н	-3.364555000	-2.928939000	0.442402000
Н	-5.075375000	-3.091187000	-0.055063000
0	-1.657265000	-1.569473000	-0.677095000
0	5.510087000	-0.807230000	0.643816000
С	6.587427000	-0.661666000	-0.288543000
Н	6.393070000	-1.237280000	-1.197702000
Н	6.742164000	0.391185000	-0.539844000
Н	7.469900000	-1.053275000	0.213810000
1y	TS2 S_1		
C	-1.669927000	2.121649000	0.177922000
С	-1.874819000	-0.425335000	0.574759000
С	-0.642889000	3.082866000	-0.024256000
Н	-0.815771000	3.980811000	-0.610373000
Н	0.228941000	3.075037000	0.616950000
С	0.086499000	0.777856000	-0.435148000
Н	-0.253989000	0.784397000	-1.464724000
С	-1.022838000	0.834147000	0.593666000
Н	-0.609773000	0.910892000	1.602536000
С	-2.955143000	2.150934000	-0.227441000
Н	-3.379996000	3.040531000	-0.680617000
С	1.436472000	0.391567000	-0.191240000
С	1.964744000	0.172854000	1.106719000
С	2.324926000	0.240831000	-1.281933000
С	3.288445000	-0.171443000	1.292398000
Н	1.324322000	0.265134000	1.974311000
С	3.655463000	-0.103479000	-1.104437000
Н	1.950795000	0.401328000	-2.287257000
С	4.149287000	-0.312991000	0.191670000
Н	3.683291000	-0.342827000	2.286956000
Н	4.297780000	-0.209164000	-1.967722000
С	-3.862881000	0.974361000	-0.105408000
Н	-4.494672000	0.899171000	-0.990258000
Н	-4.547068000	1.078757000	0.745902000
Ν	-3.158307000	-0.327524000	0.033386000
С	-3.962140000	-1.455688000	-0.245224000
0	-5.157272000	-1.294048000	-0.426997000
С	-3.330294000	-2.813847000	-0.383781000
Н	-2.363514000	-2.773993000	-0.883879000
Н	-3.169327000	-3.254529000	0.601450000

Н	-4.027334000	-3.435306000	-0.946081000
0	-1.413851000	-1.473113000	0.994832000
0	5.429503000	-0.656048000	0.477173000
C	6.351434000	-0.820887000	-0.605333000
н	6 029300000	-1 621143000	-1 277701000
н	6.470125000	0 110886000	-1 165778000
ц	7 200057000	-1 092004000	-0.145066000
	7.299937000	-1.092004000	-0.145000000
20	final product C		
2U_		1 012001000	0 1 2 1 0 7 7 0 0 0
C	0.509395000	1.912001000	-0.1318//000
C	1.238290000	-0.502981000	0.051563000
C	-0.850080000	2.243372000	0.436109000
Н	-0.885175000	2.863575000	1.332258000
Н	-1.523602000	2.658743000	-0.318947000
С	-1.071375000	0.696738000	0.608904000
Н	-0.794163000	0.398641000	1.623821000
С	0.155238000	0.467978000	-0.339682000
Н	-0.163289000	0.239214000	-1.363661000
С	1.756473000	2.349414000	-0.178517000
Н	2.067259000	3.350094000	0.100336000
С	-2.394452000	0.086332000	0.238349000
С	-2.456774000	-1.234270000	-0.222368000
C	-3.585083000	0.807204000	0.372725000
Ċ	-3.680252000	-1.818459000	-0.543728000
н	-1.540048000	-1.804951000	-0.321924000
c	-4 811335000	0 223577000	0.053331000
н	-3 556820000	1 830952000	0.00000000
C	-// 8631/19000	-1 000000000	-0.407674000
ц	-2 710222000	-2 8/100000	
	-3.710333000 E 724990000	-2.841990000	-0.900997000
	-5.724660000	1 54425 000	0.102587000
H	-5.815202000	-1.544256000	-0.659703000
C	2.810452000	1.36/2//000	-0.614551000
H	3./8089/000	1.646289000	-0.214260000
н	2.913938000	1.345612000	-1./05241000
Ν	2.545124000	-0.027570000	-0.137982000
С	3.702560000	-0.827977000	-0.000809000
0	4.782896000	-0.356518000	-0.316885000
С	3.598312000	-2.231440000	0.527837000
Н	3.131586000	-2.251189000	1.512786000
Н	2.984531000	-2.852438000	-0.125922000
Н	4.610721000	-2.630432000	0.579451000
0	0.974530000	-1.605953000	0.496729000
2∩	final product S.		
20_ C		1 857021000	-0 145264000
c	2 212200000	-0.407442000	0.143204000
C C	2.212330000	-0.437443000	0.012330000
		2.011301000	0.455/85000
п	-0.10/420000	2.000924000	1.3303/2000

Н	-0.797373000	2.435713000	-0.312006000
С	-0.175121000	0.513557000	0.603081000
Н	0.135491000	0.231414000	1.612327000
С	1.054373000	0.390782000	-0.362502000
Н	0.742330000	0.144620000	-1.384341000
С	2.498701000	2.392650000	-0.195599000
Н	2.731440000	3.412589000	0.088881000
С	-1.439388000	-0.213622000	0.243233000
С	-1.390232000	-1.566942000	-0.119282000
С	-2.676000000	0.425519000	0.284073000
С	-2.549913000	-2.269115000	-0.438454000
Н	-0.429437000	-2.068733000	-0.145016000
С	-3.823954000	-0.295423000	-0.036620000
Н	-2.759644000	1.466701000	0.560639000
С	-3.788564000	-1.637184000	-0.400615000
Н	-2.490599000	-3.313759000	-0.718720000
Н	-4.699824000	-2.163066000	-0.647009000
С	3.622746000	1.496170000	-0.642658000
Н	4.573146000	1.853287000	-0.257392000
Н	3.711775000	1.475375000	-1.734508000
Ν	3.474282000	0.087848000	-0.154269000
С	4.695060000	-0.608771000	0.011519000
0	5.733724000	-0.056231000	-0.310300000
С	4.703336000	-1.998272000	0.584595000
Н	4.195160000	-2.036057000	1.548176000
Н	4.184188000	-2.694808000	-0.075286000
Н	5.746199000	-2.294464000	0.692105000
0	2.033575000	-1.629596000	0.427270000
Ν	-5.121914000	0.392341000	0.011756000
0	-6.134024000	-0.259096000	-0.232321000
0	-5.136593000	1.587873000	0.294137000
2y_	_final product S_0		
С	1.425036000	1.950815000	-0.158305000
С	1.962757000	-0.502752000	0.105123000
С	0.117781000	2.416080000	0.437450000
Н	0.163852000	3.073592000	1.306203000
Н	-0.543996000	2.855514000	-0.314436000
С	-0.224190000	0.902011000	0.683985000
Н	0.067102000	0.623402000	1.700564000
С	0.946255000	0.534158000	-0.292555000
Н	0.575105000	0.290961000	-1.295356000
С	2.700946000	2.281806000	-0.263644000
Н	3.100803000	3.264103000	-0.037732000
С	-1.603574000	0.388790000	0.377542000
С	-1.797272000	-0.957529000	0.033359000
С	-2.725920000	1.211321000	0.452120000
С	-3.064113000	-1.457144000	-0.229785000

Н	-0.940267000	-1.619810000	-0.023230000
С	-4.010825000	0.724745000	0.192947000
Н	-2.612579000	2.256694000	0.717169000
С	-4.182512000	-0.616828000	-0.152196000
Н	-3.207961000	-2.497539000	-0.498068000
Н	-4.855518000	1.396681000	0.260077000
С	3.658785000	1.203852000	-0.693403000
Н	4.658032000	1.412920000	-0.321556000
Н	3.735579000	1.146204000	-1.785063000
Ν	3.293445000	-0.152711000	-0.174703000
С	4.379361000	-1.053174000	-0.087707000
0	5.482835000	-0.678348000	-0.450541000
С	4.172303000	-2.447513000	0.435289000
Н	3.799544000	-2.432788000	1.459787000
Н	3.437374000	-2.989125000	-0.161369000
Н	5.136670000	-2.952373000	0.391916000
0	1.634315000	-1.552478000	0.628750000
0	-5.386844000	-1.193967000	-0.431326000
С	-6.556537000	-0.378151000	-0.358954000
Н	-6.700732000	0.018708000	0.650762000
Н	-6.508956000	0.447918000	-1.075393000
Н	-7.390299000	-1.030670000	-0.614004000
1d-i	S ₀		
С	1.295329000	2.048691000	1.092607000
С	0.794101000	-0.884128000	0.015599000
С	1.125343000	1.828712000	2.365469000
Н	1.954228000	1.881621000	3.066430000
Н	0.146128000	1.581436000	2.767751000
С	-1.632914000	-0.820482000	0.261276000
Н	-1.489923000	-1.567611000	1.036709000
С	-0.536145000	-0.361501000	-0.364766000
Н	-0.614020000	0.386337000	-1.138714000
С	1.457518000	2.221243000	-0.189251000
Н	1.355033000	3.213360000	-0.624205000
С	-3.016106000	-0.419801000	0.019243000
С	-3.380790000	0.564456000	-0.917521000
С	-4.031835000	-1.045954000	0.761052000
С	-4.714583000	0.902929000	-1.103492000
Н	-2.619285000	1.068723000	-1.500052000
С	-5.368716000	-0.706722000	0.572899000
Н	-3.761764000	-1.804740000	1.487486000
С	-5.714371000	0.268684000	-0.360463000
Н	-4.979909000	1.664070000	-1.828369000
Н	-6.138405000	-1.202197000	1.153449000
н			
	-6.754190000	0.536270000	-0.509629000

H 2.711535000 1.335237000 -1.674748000

Н	1.012780000	1.071174000	-1.943696000
Ν	1.906891000	-0.218676000	-0.548661000
С	3.192320000	-0.756470000	-0.362344000
0	0.933432000	-1.822546000	0.781682000
0	3.456279000	-1.932182000	-0.301070000
0	4.108515000	0.223741000	-0.289307000
С	5.484134000	-0.204892000	-0.199958000
н	5.644598000	-0.773038000	0.716654000
н	5.751180000	-0.811515000	-1.066012000
Н	6.068007000	0.712780000	-0.184488000
1d-	ii S.		
C	1 19/1915000	2 368494000	0 982727000
c c	0.913563000	-0 607908000	0.091248000
c	1 072885000	2 208606000	2 270053000
н	1 908529000	2.200000000	2.270033000
н	0 129176000	1 897713000	2.344034000
c	-1 510197000	-0.696048000	0 368809000
н	-1 303715000	-1 252172000	1 279026000
C	-0.456481000	-0 279549000	-0 353632000
н	-0 594011000	0.275545000	-1 260280000
C III	1 3080/13000	2 / 861 79000	-0.3105020000
с н	1 104/28000	2.480179000	-0.310302000
C C	-2 922460000	-0.475661000	0.785085000
c	2 270706000	0.473001000	1.074445000
c	2 27000000	0.207333000	-1.074445000
C C	-4 728278000	0.388705000	-1 202180000
с ц	-2 656220000	0.388703000	-1.302180000
C II	E 240702000	0.390409000	-1.789773000
с ц	2 545547000	1 100032000	1 959275000
C II	-3.343347000 E 660392000	-1.498833000	0.204654000
с ц	-3.009283000 E 0E8E6E000	-0.100428000	2 190290000
п	-5.058505000 E 064202000	1 17/5/2000	-2.169269000
п	-3.904302000	-1.174343000	1.431424000
п С	1 710252000	1 269920000	1 244042000
с ц	2 620102000	1.506620000	-1.244043000
п	2.030198000	1.043297000	-1./5//54000
	1.054401000	1.240372000	-2.01/100000
	1.954401000	0.078278000	-0.580629000
	3.305235000	-0.269023000	-0.416020000
0	4.207611000	0.540655000	-0.468563000
0	1.1418/8000	-1.40/190000	0.983172000
0	3.4/92/9000	-1.580326000	-0.280554000
L L	4.832837000	-2.010154000	-0.031843000
н	5.472969000		-0.881632000
н	5.222188000	-1.54/828000	0.872680000
н	4./63633000	-3.093683000	0.099787000

1d-iii S_0

C -0.740490000 -0.925105000 -0.849508 C -2.151504000 -1.227678000 2.747670 H -2.377941000 -0.389378000 3.401728 H -1.312765000 -1.861684000 3.023560 C 1.682067000 -0.754471000 -0.648470 H 1.723144000 -1.651172000 -1.260194 C 0.471403000 -0.241739000 -0.369033 H 0.355730000 0.654737000 0.217957 C -3.540304000 -1.682276000 0.589149 H -4.417260000 -2.325994000 0.609332 C 2.973278000 -0.229209000 -0.2128400 C 3.108311000 0.952750000 0.5381560 C 4.362915000 1.400554000 0.9302430 H 2.230310000 1.525279000 0.811378 C 5.392618000 -0.489252000 -0.163923 H 4.043134000 -1.849319000 -1.140380 C 5.510205000 0.681765000 0.5824550 H 6.277838000 -1.0	D.925105000-0.8495080001.2276780002.7476700000.3893780003.4017280001.8616840003.0235600000.754471000-0.6484700001.651172000-1.2601940000.241739000-0.3690330000.6547370000.2179570001.6822760000.5891490002.3259940000.6093320000.229209000-0.2128400000.9527500000.5381560000.938417000-0.5588140001.4005540000.9302430001.5252790000.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.00803000-0.7623390000.513349000-1.1461070001.909277000-1.466755000
C -2.151504000 -1.227678000 2.747670 H -2.377941000 -0.389378000 3.401728 H -1.312765000 -1.861684000 3.023560 C 1.682067000 -0.754471000 -0.648470 H 1.723144000 -1.651172000 -1.260194 C 0.471403000 -0.241739000 -0.369033 H 0.355730000 0.654737000 0.217957 C -3.540304000 -1.682276000 0.589149 H -4.417260000 -2.325994000 0.609332 C 2.973278000 -0.229209000 -0.212840 C 3.108311000 0.952750000 0.5381560 C 4.362915000 1.400554000 0.9302430 H 2.230310000 1.525279000 0.811378 C 5.392618000 -0.489252000 -0.163923 H 4.043134000 -1.849319000 -1.140380 C 5.510205000 0.681765000 0.5824550 H 6.277838000 -1.051137000 -0.439098 H 6.487232000 1.0360	1.2276780002.7476700000.3893780003.4017280001.8616840003.0235600000.754471000-0.6484700001.651172000-1.2601940000.241739000-0.3690330000.6547370000.2179570001.6822760000.5891490002.325994000-0.2128400000.229209000-0.2128400000.9527500000.5381560000.938417000-0.5588140001.4005540000.9302430001.525279000-0.1639230001.849319000-1.1403800000.6817650000.5824550001.051137000-0.4390980001.0360310000.8907190001.100803000-1.1461070001.909277000-1.466755000
H-2.377941000-0.3893780003.401728H-1.312765000-1.8616840003.023560C1.682067000-0.754471000-0.648470H1.723144000-1.651172000-1.260194C0.471403000-0.241739000-0.369033H0.3557300000.6547370000.217957C-3.540304000-1.6822760000.589149H-4.417260000-2.3259940000.609332C2.973278000-0.229209000-0.212840C3.1083110000.9527500000.5381560C4.3629150001.4005540000.9302430H2.2303100001.5252790000.811378C5.392618000-0.489252000-0.163923H4.043134000-1.849319000-1.140380C5.5102050000.6817650000.5824550H4.4509580002.3141660001.507128H6.277838000-1.051137000-0.439098H6.4872320001.0360310000.890719C-3.188530000-1.100803000-0.762339H-4.019818000-0.513349000-1.1466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279757	0.3893780003.4017280001.8616840003.0235600000.754471000-0.6484700001.651172000-1.2601940000.241739000-0.3690330000.6547370000.2179570001.6822760000.5891490002.3259940000.6093320000.229209000-0.2128400000.9527500000.5381560000.938417000-0.5588140000.938417000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070000.99277000-1.466755000
H-1.312765000-1.8616840003.023560C1.682067000-0.754471000-0.648470H1.723144000-1.651172000-1.260194C0.471403000-0.241739000-0.369033H0.3557300000.6547370000.217957C-3.540304000-1.6822760000.589149H-4.417260000-2.3259940000.609332C2.973278000-0.229209000-0.212840C3.1083110000.9527500000.5381560C4.135663000-0.938417000-0.558814C4.3629150001.4005540000.9302430H2.2303100001.5252790000.811378C5.392618000-0.489252000-0.163923H4.043134000-1.849319000-1.140380C5.5102050000.6817650000.5824550H4.4509580002.3141660001.507128H6.277838000-1.051137000-0.439098H6.4872320001.0360310000.890719C-3.188530000-1.100803000-0.762339H-4.019818000-0.513349000-1.1466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279757	1.8616840003.0235600000.754471000-0.6484700001.651172000-1.2601940000.241739000-0.3690330000.6547370000.2179570001.6822760000.5891490002.3259940000.6093320000.229209000-0.2128400000.9527500000.5381560000.938417000-0.5588140000.4005540000.9302430001.5252790000.8113780000.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-1.1461070001.909277000-1.466755000
C 1.682067000 -0.754471000 -0.648470 H 1.723144000 -1.651172000 -1.260194 C 0.471403000 -0.241739000 -0.369033 H 0.355730000 0.654737000 0.217957 C -3.540304000 -1.682276000 0.589149 H -4.417260000 -2.325994000 0.609332 C 2.973278000 -0.229209000 -0.212840 C 3.108311000 0.952750000 0.5381560 C 4.135663000 -0.938417000 -0.558814 C 4.362915000 1.400554000 0.9302430 H 2.230310000 1.525279000 0.811378 C 5.392618000 -0.489252000 -0.163923 H 4.043134000 -1.849319000 -1.140380 C 5.510205000 0.681765000 0.5824550 H 4.450958000 2.314166000 1.507128 H 6.487232000 1.036031000 0.890719 C -3.188530000 -1.100803000 -0.762339 H -4.019818000 -0.51334	D.754471000-0.6484700001.651172000-1.260194000D.241739000-0.369033000D.6547370000.2179570001.6822760000.5891490002.3259940000.609332000D.229209000-0.212840000D.9527500000.538156000D.938417000-0.558814000J.4005540000.9302430001.525279000-0.1639230001.849319000-1.140380000D.6817650000.5824550002.3141660001.5071280001.0360310000.8907190001.100803000-0.762339000D.513349000-1.1461070001.909277000-1.466755000
H1.723144000-1.651172000-1.260194C0.471403000-0.241739000-0.369033H0.3557300000.6547370000.217957C-3.540304000-1.6822760000.589149H-4.417260000-2.3259940000.609332C2.973278000-0.229209000-0.212840C3.1083110000.9527500000.5381560C4.135663000-0.938417000-0.558814C4.3629150001.4005540000.9302430H2.2303100001.5252790000.811378C5.392618000-0.489252000-0.163923H4.043134000-1.849319000-1.140380C5.5102050000.6817650000.5824550H4.4509580002.3141660001.507128H6.277838000-1.051137000-0.439098H6.4872320001.0360310000.890719C-3.188530000-1.100803000-0.762339H-4.019818000-0.513349000-1.1466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279757	1.651172000-1.2601940000.241739000-0.3690330000.6547370000.2179570001.6822760000.5891490002.3259940000.6093320000.229209000-0.2128400000.9527500000.5381560000.938417000-0.5588140000.9384170000.9302430001.5252790000.8113780000.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070000.92570460000.252046000
C 0.471403000 -0.241739000 -0.369033 H 0.355730000 0.654737000 0.2179574 C -3.540304000 -1.682276000 0.589149 H -4.417260000 -2.325994000 0.609332 C 2.973278000 -0.229209000 -0.212840 C 3.108311000 0.952750000 0.5381560 C 4.135663000 -0.938417000 -0.558814 C 4.362915000 1.400554000 0.9302430 H 2.230310000 1.525279000 0.811378 C 5.392618000 -0.489252000 -0.163923 H 4.043134000 -1.849319000 -1.140380 C 5.510205000 0.681765000 0.5824550 H 4.450958000 2.314166000 1.507128 H 6.277838000 -1.051137000 -0.439098 H 6.487232000 1.036031000 0.890719 C -3.188530000 -1.100803000 -0.762339 H -4.019818000 -0.513349000 -1.466755 N -1.984827000 -0.257	0.241739000-0.3690330000.6547370000.2179570001.6822760000.5891490002.3259940000.6093320000.229209000-0.2128400000.9527500000.5381560000.938417000-0.5588140000.938417000-0.5588140000.4005540000.9302430001.5252790000.8113780000.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-1.1461070001.909277000-1.466755000
H0.3557300000.6547370000.217957C-3.540304000-1.6822760000.589149H-4.417260000-2.3259940000.609332C2.973278000-0.229209000-0.212840C3.1083110000.9527500000.5381560C4.135663000-0.938417000-0.558814C4.3629150001.4005540000.9302430H2.2303100001.5252790000.811378C5.392618000-0.489252000-0.163923H4.043134000-1.849319000-1.140380C5.5102050000.6817650000.5824550H4.4509580002.3141660001.507128H6.277838000-1.051137000-0.439098H6.4872320001.0360310000.890719C-3.188530000-1.100803000-0.762339H-4.019818000-0.513349000-1.1466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279757	D.6547370000.2179570001.6822760000.5891490002.3259940000.6093320000.229209000-0.2128400000.9527500000.5381560000.938417000-0.5588140000.9384170000.9302430001.5252790000.8113780000.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-1.1461070001.909277000-1.466755000
C -3.540304000 -1.682276000 0.589149 H -4.417260000 -2.325994000 0.609332 C 2.973278000 -0.229209000 -0.212840 C 3.108311000 0.952750000 0.5381560 C 4.135663000 -0.938417000 -0.558814 C 4.362915000 1.400554000 0.9302430 H 2.230310000 1.525279000 0.811378 C 5.392618000 -0.489252000 -0.163923 H 4.043134000 -1.849319000 -1.140380 C 5.510205000 0.681765000 0.5824550 H 4.450958000 2.314166000 1.507128 H 6.277838000 -1.051137000 -0.439098 H 6.487232000 1.036031000 0.890719 C -3.188530000 -1.100803000 -0.762339 H -4.019818000 -0.513349000 -1.1466755 N -1.984827000 -0.257046000 -0.728910 C -2.099570000 1.119660000 -0.558193 O -0.729901000 -2.	1.6822760000.5891490002.3259940000.6093320000.229209000-0.2128400000.9527500000.5381560000.938417000-0.5588140000.9384170000.9302430001.5252790000.8113780000.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-1.1461070001.909277000-1.466755000
H-4.417260000-2.3259940000.609332C2.973278000-0.229209000-0.212840C3.1083110000.9527500000.5381560C4.135663000-0.938417000-0.558814C4.3629150001.4005540000.9302430H2.2303100001.5252790000.811378C5.392618000-0.489252000-0.163923H4.043134000-1.849319000-1.140380C5.5102050000.6817650000.5824550H4.4509580002.3141660001.507128H6.277838000-1.051137000-0.439098H6.4872320001.0360310000.890719C-3.188530000-1.100803000-0.762339H-4.019818000-0.513349000-1.1466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279752	2.3259940000.6093320000.229209000-0.2128400000.9527500000.5381560000.938417000-0.5588140000.9384170000.9302430001.4005540000.9302430001.5252790000.8113780000.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-1.1461070001.909277000-1.466755000
C 2.973278000 -0.229209000 -0.212840 C 3.108311000 0.952750000 0.5381560 C 4.135663000 -0.938417000 -0.558814 C 4.362915000 1.400554000 0.9302430 H 2.230310000 1.525279000 0.811378 C 5.392618000 -0.489252000 -0.163923 H 4.043134000 -1.849319000 -1.140380 C 5.510205000 0.681765000 0.5824550 H 4.450958000 2.314166000 1.507128 H 6.277838000 -1.051137000 -0.439098 H 6.487232000 1.036031000 0.8907190 C -3.188530000 -1.100803000 -0.762339 H -4.019818000 -0.513349000 -1.1466755 N -1.984827000 -0.257046000 -0.728910 C -2.099570000 1.119660000 -0.558193 O -0.729901000 -2.069605000 -1.279757	0.229209000-0.2128400000.9527500000.5381560000.938417000-0.5588140000.9384170000.9302430001.4005540000.9302430001.5252790000.8113780000.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070001.909277000-1.466755000
C 3.108311000 0.952750000 0.5381560 C 4.135663000 -0.938417000 -0.558814 C 4.362915000 1.400554000 0.9302430 H 2.230310000 1.525279000 0.811378 C 5.392618000 -0.489252000 -0.163923 H 4.043134000 -1.849319000 -1.140380 C 5.510205000 0.681765000 0.5824550 H 4.450958000 2.314166000 1.507128 H 6.277838000 -1.051137000 -0.439098 H 6.487232000 1.036031000 0.890719 C -3.188530000 -1.100803000 -0.762339 H -4.019818000 -0.513349000 -1.146107 H -2.996726000 -1.909277000 -1.466755 N -1.984827000 -0.257046000 -0.728910 C -2.099570000 1.119660000 -0.558193 O -0.729901000 -2.069605000 -1.279757	0.9527500000.5381560000.938417000-0.5588140000.938417000-0.5588140001.4005540000.9302430001.5252790000.8113780000.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070001.909277000-25251000
C 4.135663000 -0.938417000 -0.558814 C 4.362915000 1.400554000 0.9302430 H 2.230310000 1.525279000 0.811378 C 5.392618000 -0.489252000 -0.163923 H 4.043134000 -1.849319000 -1.140380 C 5.510205000 0.681765000 0.5824550 H 4.450958000 2.314166000 1.507128 H 6.277838000 -1.051137000 -0.439098 H 6.487232000 1.036031000 0.890719 C -3.188530000 -1.100803000 -0.762339 H -4.019818000 -0.513349000 -1.1466755 N -1.984827000 -0.257046000 -0.728910 C -2.099570000 1.119660000 -0.558193 O -0.729901000 -2.069605000 -1.279757	0.938417000-0.5588140000.9302430000.9302430001.5252790000.8113780000.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070001.909277000-0.43002
C 4.362915000 1.400554000 0.9302430 H 2.230310000 1.525279000 0.811378 C 5.392618000 -0.489252000 -0.163923 H 4.043134000 -1.849319000 -1.140380 C 5.510205000 0.681765000 0.5824550 H 4.450958000 2.314166000 1.507128 H 6.277838000 -1.051137000 -0.439098 H 6.487232000 1.036031000 0.8907199 C -3.188530000 -1.100803000 -0.762339 H -4.019818000 -0.513349000 -1.1466755 N -1.984827000 -0.257046000 -0.728910 C -2.099570000 1.119660000 -0.558193 O -0.729901000 -2.069605000 -1.279752	1.4005540000.9302430001.5252790000.8113780000.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070001.909277000-0.466755000
H2.2303100001.5252790000.811378C5.392618000-0.489252000-0.163923H4.043134000-1.849319000-1.140380C5.5102050000.6817650000.5824550H4.4509580002.3141660001.507128H6.277838000-1.051137000-0.439098H6.4872320001.0360310000.890719C-3.188530000-1.100803000-0.762339H-4.019818000-0.513349000-1.146107H-2.996726000-1.909277000-1.466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279757	1.5252790000.8113780000.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070001.909277000-222212022
C 5.392618000 -0.489252000 -0.163923 H 4.043134000 -1.849319000 -1.140380 C 5.510205000 0.681765000 0.5824556 H 4.450958000 2.314166000 1.507128 H 6.277838000 -1.051137000 -0.439098 H 6.487232000 1.036031000 0.890719 C -3.188530000 -1.100803000 -0.762339 H -4.019818000 -0.513349000 -1.146107 H -2.996726000 -1.909277000 -1.466755 N -1.984827000 -0.257046000 -0.728910 C -2.099570000 1.119660000 -0.558193 O -0.729901000 -2.069605000 -1.279752	0.489252000-0.1639230001.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070001.909277000-1.466755000
H4.043134000-1.849319000-1.140380C5.5102050000.6817650000.5824550H4.4509580002.3141660001.507128H6.277838000-1.051137000-0.439098H6.4872320001.0360310000.890719C-3.188530000-1.100803000-0.762339H-4.019818000-0.513349000-1.1466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279752	1.849319000-1.1403800000.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070001.909277000-1.466755000
C 5.510205000 0.681765000 0.5824550 H 4.450958000 2.314166000 1.507128 H 6.277838000 -1.051137000 -0.439098 H 6.487232000 1.036031000 0.890719 C -3.188530000 -1.100803000 -0.762339 H -4.019818000 -0.513349000 -1.146107 H -2.996726000 -1.909277000 -1.466755 N -1.984827000 -0.257046000 -0.728910 C -2.099570000 1.119660000 -0.558193 O -0.729901000 -2.069605000 -1.279752	0.6817650000.5824550002.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070001.909277000-1.466755000
H4.4509580002.3141660001.507128H6.277838000-1.051137000-0.439098H6.4872320001.0360310000.890719C-3.188530000-1.100803000-0.762339H-4.019818000-0.513349000-1.146107H-2.996726000-1.909277000-1.466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279752	2.3141660001.5071280001.051137000-0.4390980001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070001.909277000-1.466755000
H6.277838000-1.051137000-0.439098H6.4872320001.0360310000.890719C-3.188530000-1.100803000-0.762339H-4.019818000-0.513349000-1.146107H-2.996726000-1.909277000-1.466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279752	1.051137000-0.4390980001.0360310000.8907190001.100803000-0.7623390000.513349000-1.1461070001.909277000-1.466755000
H6.4872320001.0360310000.890719C-3.188530000-1.100803000-0.762339H-4.019818000-0.513349000-1.146107H-2.996726000-1.909277000-1.466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279752	1.036031000 0.890719000 1.100803000 -0.762339000 0.513349000 -1.146107000 1.909277000 -1.466755000
C-3.188530000-1.100803000-0.762339H-4.019818000-0.513349000-1.146107H-2.996726000-1.909277000-1.466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279752	1.100803000-0.7623390000.513349000-1.1461070001.909277000-1.4667550000.2572460000.252246000
H-4.019818000-0.513349000-1.146107H-2.996726000-1.909277000-1.466755N-1.984827000-0.257046000-0.728910C-2.0995700001.119660000-0.558193O-0.729901000-2.069605000-1.279752	0.513349000-1.1461070001.909277000-1.4667550002.257045000-2.75010000
H -2.996726000 -1.909277000 -1.466755 N -1.984827000 -0.257046000 -0.728910 C -2.099570000 1.119660000 -0.558193 O -0.729901000 -2.069605000 -1.279752	1.909277000 -1.466755000
N -1.984827000 -0.257046000 -0.728910 C -2.099570000 1.119660000 -0.558193 O -0.729901000 -2.069605000 -1.279752	0.057046000 0.700040000
C -2.099570000 1.119660000 -0.558193 O -0.729901000 -2.069605000 -1.279752	0.25/046000 - 0.728910000
	L.119660000 -0.558193000
C 0.723301000 2.003003000 1.273732	2.069605000 -1.279752000
0 -1.217469000 1.928343000 -0.758064	4 020242000 0 750064000
0 -3.336899000 1.449448000 -0.163111	1.928343000 -0.758064000
C -3.596140000 2.861790000 -0.010494	1.449448000 -0.163111000
H -2.953437000 3.282962000 0.762977	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.010494000
	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.762977000
н -3.435478000 3.382771000 -0.954714	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.954714000
H -3.435478000 3.382771000 -0.954714 H -4.640365000 2.927039000 0.286927	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.286927000
H -3.435478000 3.382771000 -0.954714 H -4.640365000 2.927039000 0.286927	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.286927000
H -3.435478000 3.382771000 -0.954714 H -4.640365000 2.927039000 0.286927 1d-iiii S_0	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.286927000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.2869270001.7365250001.505167000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.928343000 -0.758064000 1.449448000 -0.163111000 2.861790000 -0.010494000 3.282962000 0.762977000 3.382771000 -0.954714000 2.927039000 0.286927000 1.736525000 1.505167000 0.691234000 -0.984937000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.928343000 -0.758064000 1.449448000 -0.163111000 2.861790000 -0.010494000 3.282962000 0.762977000 3.382771000 -0.954714000 2.927039000 0.286927000 1.736525000 1.505167000 0.691234000 -0.984937000 1.783240000 2.488485000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.2869270001.7365250001.5051670000.691234000-0.9849370001.7832400002.4884850001.1174170003.343739000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.2869270001.7365250001.5051670000.691234000-0.9849370001.7832400002.4884850001.1174170003.3437390002.4936320002.489208000
H -3.435478000 3.382771000 -0.954714 H -4.640365000 2.927039000 0.286927 1d-iiii S ₀ C -2.854762000 -1.736525000 1.505167 C -1.020749000 -0.691234000 -0.984937 C -1.999529000 -1.783240000 2.488485 H -2.083340000 -1.117417000 3.343739 H -1.176764000 -2.493632000 2.489208 C 1.415751000 -0.676852000 -0.820134	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.2869270001.7365250001.5051670000.691234000-0.9849370001.7832400002.4884850001.1174170003.3437390002.493632000-0.820134000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.2869270001.7365250001.5051670000.691234000-0.9849370001.7832400002.4884850001.1174170003.3437390002.493632000-0.8201340001.353815000-1.669789000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.2869270001.7365250001.5051670000.691234000-0.9849370001.7832400002.4884850001.1174170003.3437390002.4936320002.4892080000.676852000-0.8201340001.353815000-0.368854000
H -3.435478000 3.382771000 -0.954714 H -4.640365000 2.927039000 0.286927 1d-iiii S ₀ C -2.854762000 -1.736525000 1.505167 C -1.020749000 -0.691234000 -0.984937 C -1.999529000 -1.783240000 2.488485 H -2.083340000 -1.117417000 3.343739 H -1.176764000 -2.493632000 2.489208 C 1.415751000 -0.676852000 -0.820134 H 1.407687000 -1.353815000 -1.669789 C 0.233497000 -0.226280000 -0.368854 H 0.166998000 0.454233000 0.466083	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.2869270001.7365250001.5051670000.691234000-0.9849370001.7832400002.4884850001.1174170003.3437390002.4936320002.4892080000.676852000-0.8201340001.353815000-1.6697890000.2262800000.466083000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.2869270001.7365250001.5051670000.691234000-0.9849370001.7832400002.4884850001.1174170003.3437390002.493632000-0.8201340001.353815000-1.6697890000.226280000-0.3688540000.4542330000.498676000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.928343000-0.7580640001.449448000-0.1631110002.861790000-0.0104940003.2829620000.7629770003.382771000-0.9547140002.9270390000.2869270001.7365250001.5051670000.691234000-0.9849370001.7832400002.4884850001.1174170003.3437390002.493632000-0.8201340000.676852000-0.3688540000.226280000-0.3688540000.4560830000.4986760002.2626400000.491156000

С	2.931935000	0.533266000	0.790255000
С	3.863211000	-0.940532000	-0.881621000
С	4.211405000	0.806131000	1.255850000
Н	2.081753000	1.008586000	1.264297000
С	5.145365000	-0.666287000	-0.414002000
Н	3.723688000	-1.621223000	-1.714428000
С	5.323588000	0.207982000	0.656512000
Н	4.346488000	1.488403000	2.087433000
Н	6.002871000	-1.133612000	-0.884386000
Н	6.320413000	0.424885000	1.023051000
С	-3.463948000	-0.786457000	-0.715521000
Н	-4.292885000	-0.088311000	-0.821581000
Н	-3.424459000	-1.404305000	-1.612496000
Ν	-2.218824000	-0.013351000	-0.646429000
С	-2.322910000	1.301819000	-0.205792000
0	-3.298161000	1.741167000	0.366148000
0	-1.086484000	-1.682647000	-1.696059000
0	-1.254358000	2.033594000	-0.544101000
С	-1.225597000	3.387819000	-0.041877000
Н	-2.052804000	3.963047000	-0.457994000
Н	-1.278153000	3.390211000	1.047363000
Н	-0.274053000	3.793703000	-0.377898000

References

Das, A.; Buzzetti, L.; Puriņš, M.; Waser, J. Palladium-Catalyzed *Trans* -Hydroalkoxylation:
 Counterintuitive Use of an Aryl Iodide Additive to Promote C–H Bond Formation. *ACS Catal.* 2022, *12* (13), 7565–7570. https://doi.org/10.1021/acscatal.2c01809.

(2) Joyce, L. M.; Drew, M. A.; Tague, A. J.; Thaima, T.; Gouranourimi, A.; Ariafard, A.; Pyne, S. G.; Hyland, C. J. T. A Rare Alder-Ene Cycloisomerization of 1,6-Allenynes. *Chem. – Eur. J.* **2022**, *28* (12), e202104022. https://doi.org/10.1002/chem.202104022.

(3) Searles, S.; Li, Y.; Nassim, B.; Lopes, MT.; Tran, PT.; Crabbé, P. Observation on the synthesis of allenes by homologation of alk-1-ynes. *J. Chem. Soc., Perkin trans.* 1. **1984**, 747-751. https://doi.org/10.1039/P19840000747

Montgomery, S. L.; Mangas-Sanchez, J.; Thompson, M. P.; Aleku, G. A.; Dominguez, B.; Turner,
 N. J. Direct Alkylation of Amines with Primary and Secondary Alcohols through Biocatalytic Hydrogen
 Borrowing. *Angew. Chem. Int. Ed.* 2017, *56* (35), 10491–10494.
 https://doi.org/10.1002/anie.201705848.

(5) Vani, D.; Chahal, K.; Preethi, P.; Balasubramanian, S.; Rajender Reddy, K. Synthesis of Substituted Pyrano[3,4-b]Quinolines by Silver-Catalyzed Regioselective Intramolecular Cyclization of 3-Alkynylquinoline Aldehydes. *Asian J. Org. Chem.* **2022**, *11* (3), e202100740. https://doi.org/10.1002/ajoc.202100740.

(6) Grams, R. J. Organocatalytic Trans Semireduction of Primary and Secondary Propiolamides: Substrate Scope and Mechanistic Studies. *Adv. Synth. Catal.* **2022**, *364* (1), 172–178. https://doi.org/10.1002/adsc.202101020.

(7) Tang, X.; Zhu, C.; Cao, T.; Kuang, J.; Lin, W.; Ni, S.; Zhang, J.; Ma, S. Cadmium Iodide-Mediated Allenylation of Terminal Alkynes with Ketones. *Nat. Commun.* **2013**, *4* (10), 2450. https://doi.org/10.1038/ncomms3450.

(8) Rigaku Oxford Diffraction. *CrysAlisPro Software System*; Rigaku Corporation, Wroclaw, Poland.,2022.

(9) Sheldrick, G. M. *SHELXT* – Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr. Sect. Found. Adv.* **2015**, *71* (1), 3–8. https://doi.org/10.1107/S2053273314026370.

(10) Sheldrick, G. M. Crystal Structure Refinement with *SHELXL*. *Acta Crystallogr. Sect. C Struct. Chem.* **2015**, *71* (1), 3–8. https://doi.org/10.1107/S2053229614024218.

(11) Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. *ShelXle* : A Qt Graphical User Interface for *SHELXL. J. Appl. Crystallogr.* **2011**, *44* (6), 1281–1284. https://doi.org/10.1107/S0021889811043202.

(12) Spek, A. L. Structure Validation in Chemical Crystallography. *Acta Crystallogr. D Biol. Crystallogr.* **2009**, *65* (2), 148–155. https://doi.org/10.1107/S090744490804362X.

(13) Cottrell, S. J.; Olsson, T. S. G.; Taylor, R.; Cole, J. C.; Liebeschuetz, J. W. Validating and Understanding Ring Conformations Using Small Molecule Crystallographic Data. *J. Chem. Inf. Model.* 2012, 52 (4), 956–962. https://doi.org/10.1021/ci200439d.

(14) Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. *Mercury 4.0* : From Visualization to Analysis, Design and Prediction. *J. Appl. Crystallogr.* **2020**, *53* (1), 226–235. https://doi.org/10.1107/S1600576719014092.

(15) Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016

(16) Stanton, J. F. A Chemist's Guide to Density Functional Theory By Wolfram Koch (German Chemical Society, Frankfurt Am Main) and Max C. Holthausen (Humbolt University Berlin). Wiley-VCH: Weinheim. 2000. Xiv + 294 Pp. \$79.95. ISBN 3-527-29918-1. *J. Am. Chem. Soc.* 2001, *123* (11), 2701–2701. https://doi.org/10.1021/ja004799q.

(17) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37* (2), 785–789. https://doi.org/10.1103/PhysRevB.37.785.

(18) A new mixing of Hartree–Fock and local density-functional theories: The Journal of Chemical *Physics: Vol 98, No 2.* https://aip.scitation.org/doi/10.1063/1.464304 (accessed 2022-11-30).

(19) A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems: The Journal of Chemical Physics: Vol 136, No 15. https://aip.scitation.org/doi/10.1063/1.3700154 (accessed 2022-11-30).

(20) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32* (7), 1456–1465. https://doi.org/10.1002/jcc.21759.

(21) Dunning Jr. T. H.; Hay, P. J. in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, **1977**) 1-28.

(22) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations – potentials for the transition-metal atoms Sc to Hg, *J. Chem. Phys.* **1985**, *82*, 270-283. https://doi.org/10.1063/1.448799

(23) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations – potentials for K to Au including the outermost core orbitals. *J. Chem. Phys.* **1985**, *82*, 299-310. https://doi.org/10.1063/1.448975

(24) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113* (18), 6378–6396. https://doi.org/10.1021/jp810292n.

(25) Fukui, K. Formulation of the Reaction Coordinate. *J. Phys. Chem.* **1970**, *74* (23), 4161–4163. https://doi.org/10.1021/j100717a029.

(26) Fukui, K. The Path of Chemical Reactions - the IRC Approach. *Acc. Chem. Res.* **1981**, *14* (12), 363–368. https://doi.org/10.1021/ar00072a001.

(27) You, Y.; Nam, W. Photofunctional Triplet Excited States of Cyclometalated Ir(III) Complexes: Beyond Electroluminescence. *Chem. Soc. Rev.* **2012**, *41* (21), 7061–7084. https://doi.org/10.1039/C2CS35171D.

(28) Bokarev, S. I.; Bokareva, O. S.; Kühn, O. A Theoretical Perspective on Charge Transfer in Photocatalysis. The Example of Ir-Based Systems. *Coord. Chem. Rev.* **2015**, *304–305*, 133–145. https://doi.org/10.1016/j.ccr.2014.12.016.

(29) Bokarev, S. I.; Bokareva, O. S.; Kühn, O. Electronic Excitation Spectrum of the Photosensitizer [Ir(Ppy)2(Bpy)]+. *J. Chem. Phys.* **2012**, *136* (21), 214305. https://doi.org/10.1063/1.4723808.

Lischka, H.; Nachtigallová, D.; Aquino, A. J. A.; Szalay, P. G.; Plasser, F.; Machado, F. B. C.;
Barbatti, M. Multireference Approaches for Excited States of Molecules. *Chem. Rev.* 2018, *118* (15), 7293–7361. https://doi.org/10.1021/acs.chemrev.8b00244.

(31) Noodleman, L. Valence Bond Description of Antiferromagnetic Coupling in Transition Metal Dimers. *J. Chem. Phys.* **1981**, *74* (10), 5737–5743. https://doi.org/10.1063/1.440939.

(32) Noodleman, L.; Baerends, E. J. Electronic Structure, Magnetic Properties, ESR, and Optical Spectra for 2-Fe Ferredoxin Models by LCAO-Xa Valence Bond Theory.

(33) Neese, F. Definition of Corresponding Orbitals and the Diradical Character in Broken Symmetry DFT Calculations on Spin Coupled Systems. *J. Phys. Chem. Solids* **2004**, *65* (4), 781–785. https://doi.org/10.1016/j.jpcs.2003.11.015.

Neese, F. Prediction of Molecular Properties and Molecular Spectroscopy with Density
 Functional Theory: From Fundamental Theory to Exchange-Coupling. *Coord. Chem. Rev.* 2009, 253 (5),
 526–563. https://doi.org/10.1016/j.ccr.2008.05.014.

2a ¹H NMR spectrum (400 MHz, CDCl₃):

60

2a¹³C NMR spectrum (101 MHz, CDCl₃):

2b ¹H NMR spectrum (400 MHz, CDCl₃):

2b COSY spectrum

64

2b HSQC spectrum

2b ROESY spectrum

2c ¹H NMR spectrum (400 MHz, CDCl₃):

[7].										-2.			Current NAME EXPNO PROCNO	Data Paramet FH-25	ers 5rs 10 1
													F2 - Acc Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SSWH FIDRES AQ RG DW DE TE D1 TDO	<pre>puisition Par 20220 9 5 mm PABBO 2 65 CD 8012. 0.122 4.0894 139 62. 6 29 1.00000 = CHANNEL f1 400 1324</pre>	ameters 616 .34 ect BB/ g30 536 Cl3 16 2 820 Hz 266 Hz 465 sec .74 400 usec .70 usec 7.9 K 000 sec 1
													NUC1 P1 PLW1 F2 - Pro SI SF WDW	400.1324 15 13.00000 cessing para 65 400.1300	110 MH2 1H .00 usec 000 W meters 536 039 MHz EM
	M		Λ	W	M	h		l		u			SSB LB GB PC	0 0 0 1	.30 Hz
8.0	7.5 7.0	6.5 6	5.0 5.5 <u>6:0</u>	5.0 4.5	4.0 3.5 0.04 0.030 0.030	3.0 <u>5.0</u>	3.04	2.0	1.5	1.0	0.5	ppm			

3d ¹H NMR spectrum (400 MHz, CDCl₃):

3d ¹H NMR spectrum (400 MHz, CDCl₃):

2e ¹H NMR spectrum (400 MHz, CDCl₃):

7.404 7.385 251	7.286		r 4 558 r 4 553 r 4 544 r 4 538 r 4 538	4.519	4 . 045 4 . 030 3 . 922 3 . 880 3 . 880		L3.628 3.175	L3.141 3.090	. 3. 056			Current NAME EXPNO DPOCNO	Data Parame FH-254-2	Ters -DCM
					M.M^.	M						PROCNO F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0 ======= SFO1 NUC1 P1 PLW1 F2 - Pro SF SSB LB GB PC	uisition Pa 2022 5 mm PABBO 6 0.12 4.089 19 2 1.0000 CHANNEL f1 400.132 13.0000 cessing par 6 400.130 0	1 rameters 0930 3.24 pect BB/ zg30 5536 DC13 16 2 2266 Hz 4465 sec 0.75 .400 usec 6.50 usec 0.70 usec 98.1 K 0000 sec 1 4710 MHz 1H 5.00 usec 0000 W ameters 5536 0053 MHz EM 0.30 Hz 1.00
8.0	7.5 7.0 8.04 8.04 8.04	6.5	6.0 5.5	5.0 4.5	4.0 3.	5 3.0	2.5	2.0	1.5 1.0	0.5	ppm			

2e¹³C NMR spectrum (101 MHz, CDCl₃):

2f ¹H NMR spectrum (400 MHz, CDCl₃):

2g¹H NMR spectrum (400 MHz, CDCl₃):

2h¹H NMR spectrum (400 MHz, CDCl₃):

2h¹³C NMR spectrum (101 MHz, CDCl₃):

2i ¹H NMR spectrum (400 MHz, CDCl₃):

3j ¹H NMR spectrum (400 MHz, CDCl₃):

2k¹H NMR spectrum (400 MHz, CDCl₃):

2I¹H NMR spectrum (400 MHz, CDCl₃):

2q ¹H NMR spectrum (400 MHz, CDCl₃):

2q ¹³C NMR spectrum (101 MHz, CDCl₃):

2r¹H NMR spectrum (400 MHz, CDCl₃):

2r¹³C NMR spectrum (101 MHz, CDCl₃):

2s ¹H NMR spectrum (400 MHz, CDCl₃):

2s¹³C NMR spectrum (101 MHz, CDCl₃):

2t ¹H NMR spectrum (400 MHz, CDCl₃):

2u¹H NMR spectrum (400 MHz, CDCl₃):

2u¹³C NMR spectrum (101 MHz, CDCl₃):

2ν ¹H NMR spectrum (400 MHz, CDCl₃):

7.338 7.319 7.319 7.2319 7.2319 7.2319 7.2319 5.696 682 5.696 682 5.696 682 5.696 682 5.696 682 5.696 682 5.710	0.000 0.0000 0		L3.621 3.595 3.595 3.427 3.427 3.387 3.387 5.333 1074 2.833 2.739 2.739	L2.721 2.627 1.738 1.736 1.736 1.736 1.719 1.713 1.699	BRUKER
				Curr NAME EXPN PROCI	ent Data Parameters FH-280kolona) 23 NO 1
				F2 - Date Time INST PROB PULP TD SOLVI NS DS SWH FIDR AQ RG DW DE TE D1 TD0	Acquisition Parameters 20220725 16.02 UM spect ID 5 mm PABBO BB/ NG 65536 ENT CDC13 8012.820 Hz 0.122266 Hz 4.0894465 sec 190.75 62.400 usec 296.8 K 1.00000000 sec 1
				SF01 NUC1 P1 PLW1	CHANNEL f1 400.1324710 MHz 1H 15.00 usec 13.0000000 W
	Maria America	Mu	n man line	F2 - SI SF WDW SSB LB GB PC	Processing parameters 65536 400.1300032 MHz EM 0 0.30 Hz 0 1.00
7.5 7.0 6.5	6.0 5.5 5.0	4.5 4.0 3.5 80 10 10 10 10 10 10 10 10 10 10 10 10 10	3.0 2.5 2.0 1.5	1.0 0.5 ppm	

2w ¹H NMR spectrum (400 MHz, CDCl₃):

2w¹³C NMR spectrum (101 MHz, CDCl₃):

