Supporting Information

Highly efficient Michael-type addition of acetaldehyde to β -nitrostyrenes by whole resting cells of *Escherichia coli* expressing 4-oxalocrotonate tautomerase

Tanja Narancic¹, Jelena Radivojevic², Predrag Jovanovic³, Djordje Francuski¹, Miljan Bigovic², Veselin Maslak², Vladimir Savic³, Branka Vasiljevic¹, Kevin E.

O'Connor⁴, Jasmina Nikodinovic-Runic¹*

¹Institute of Molecular Genetics and Genetic Engineering, University of Belgrade,
Vojvode Stepe 444a, P.O.Box 23, 11010 Belgrade, Serbia

²Faculty of Chemistry, University of Belgrade

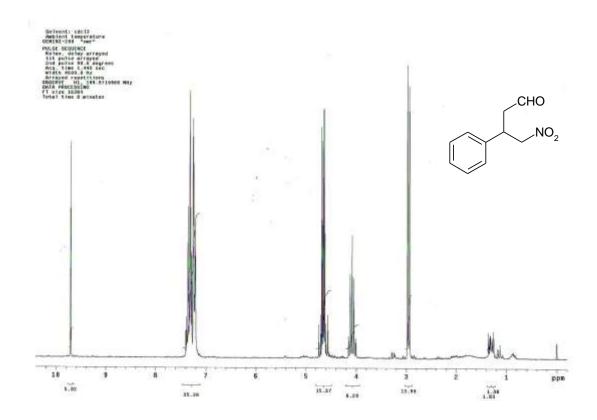
³Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia

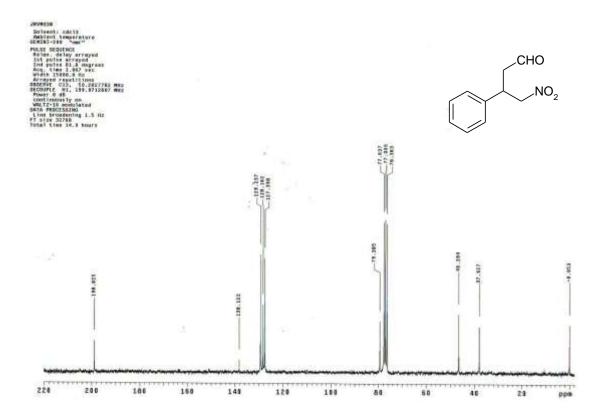
⁴School of Biomolecular and Biomedical Sciences, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland

*Corresponding author: Jasmina Nikodinovic-Runic, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O.Box 23, 11010 Belgrade, Serbia

Telephone: +381 11 3976034

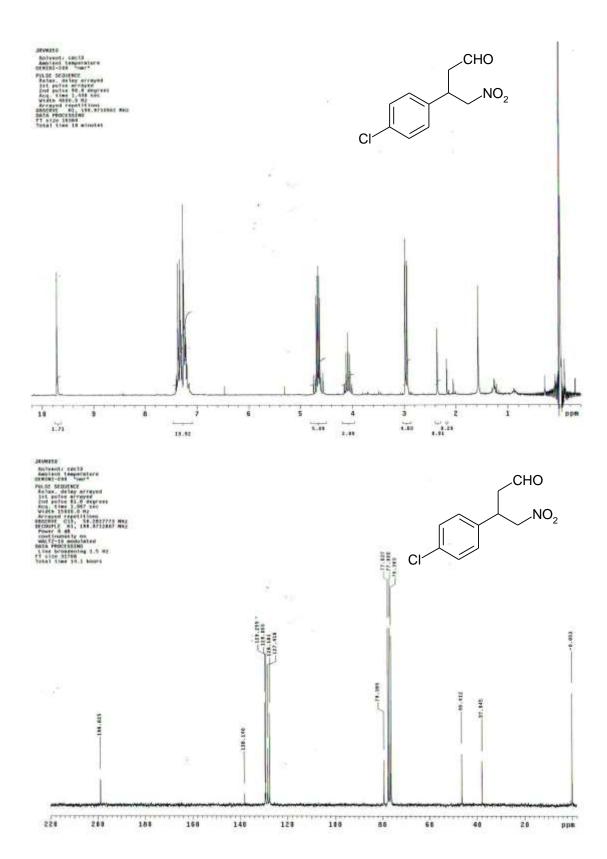
Fax: +381 11 3975808

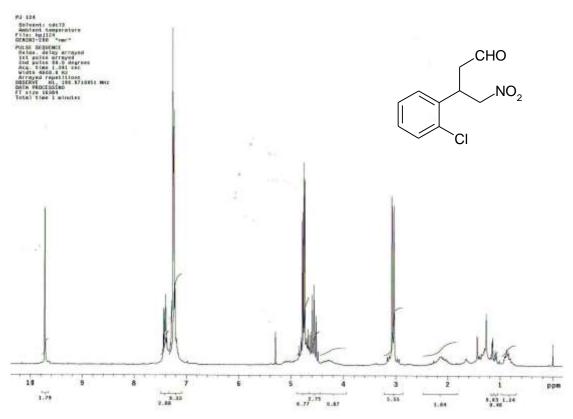

E-mail:jasmina.nikodinovic@gmail.com; jasmina.nikodinovic@imgge.bg.ac.rs

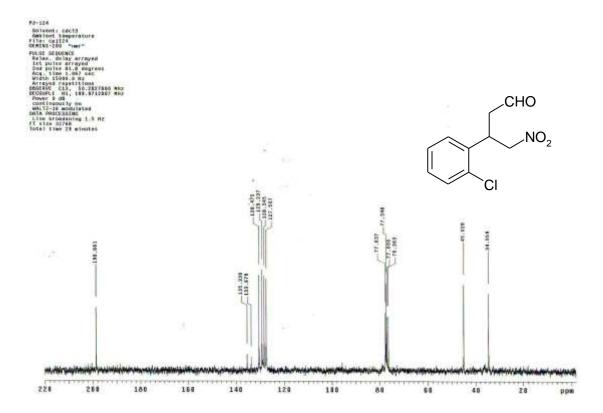

S1(A-D) Characterization data and NMR spectra of addition products obtained by biotransformation using *E.coli* BL21(4-OT)

 1 H and 13 C NMR spectra were recorded on a Varian Gemini 200 at 200/50 MHz in deuterated chloroform (CDCl₃). The chemical shifts were expressed as δ values in ppm using tetramethylsilane as internal standard and the coupling constants (J) are in Hertz (Hz). The following abbreviations were used for signal multiplicities: s, singlet; d, doublet; qu, quintet; and m, multiplet. NMR data of known compounds are in agreement with literature values.

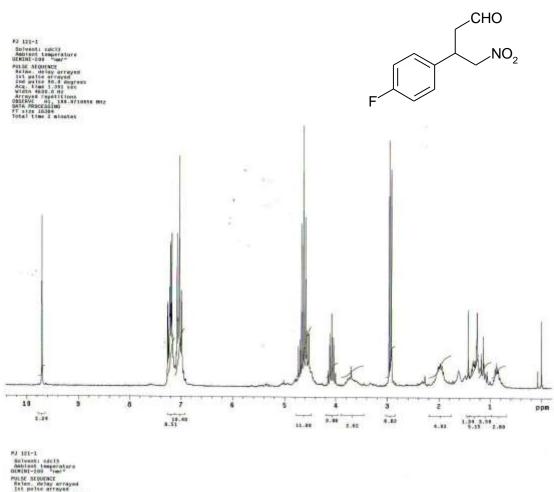
A) 4-nitro-3-phenylbutanal $(3)^1$

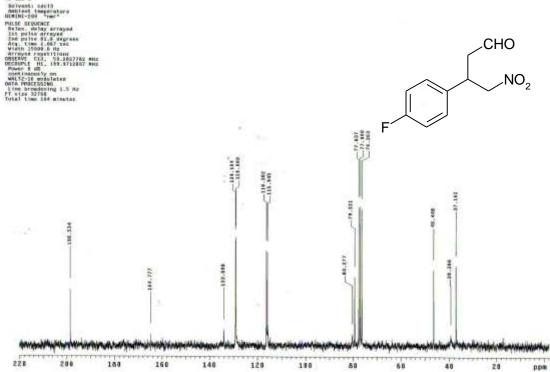

¹H NMR (200 MHz): 9.71 (s, 1H); 7.40-7.20 (m, 5H); 4.74-4.56 (m, 2H); 4.08 (qu, 1H, J_1 =7.3 Hz, J_2 =7.3 Hz); 2.94 (d, 2H, J=6.8Hz). ¹³C NMR (50 MHz): 198.8; 138.1; 129.2; 128.2; 127.4; 79.4; 46.4; 37.9.


B) 3-(4-chlorophenyl)-4-nitrobutanal (5)


¹H NMR (200 MHz): 9.71 (s, 1H); 7.40-7.15 (m, 4H); 4.74-4.56 (m, 2H); 4.08(qu, 1H, J_1 =7.3 Hz, J_2 =7.3 Hz); 2.95 (d, 2H, J=6.6 Hz). ¹³C NMR (50 MHz): 198.8; 138.1; 129.3; 128.2; 127.4; 79.4; 46.4; 37.9.

C) 3-(2-chlorophenyl)-4-nitrobutanal $(7)^1$


 1 H NMR (200 MHz): 9.72 (s, 1H); 7.45-7.18 (m, 4H); 4.83-4.48 (m, 3H); 3.05 (d, 2H, J=7.4Hz). 13 C NMR (50MHz): 198.7; 135.3; 133.7; 130.5; 129.2; 128.4; 127.5; 77.3; 45.0; 34.5.



D) 3-(4-fluorophenyl)-4-nitrobutanal $(9)^1$

¹H NMR (200 MHz): 9.71(s, 1H); 7.26-6.95 (m, 4H); 4.72-4.45 (m, 2H); 4.00 (qu, 1H, J_I =7.3 Hz, J_2 =7.3 Hz); 2.94 (d, 2H, J=7.2Hz). ¹³C NMR (50 MHz): 198.5; 133.9; 129.2; 129.0; 115.9; 79.3; 46.4; 37.2.

S2 (A-B) Synthesis of 4-amino-3-phenylbutanol (10) from biotransformation product 3

A) 4-nitro-3-phenylbutanol²

To a stirred solution of 4-nitro-3-phenylbutanal (3) (0.1 mmol) in anhydrous methanol (2.0 ml) NaBH₄ (0.15 mmol) was added at 0° C. The reaction was stirred for 30 min and quenched with H₂O and extracted with ethyl acetate (3 times 10 ml). Combined organic layers were washed with brine and dried (MgSO₄), filtered and the solvent was removed under reduced pressure. The obtained crude product was purified by flash column chromatography on silica gel (ethyl acetate/hexanes 1:1).

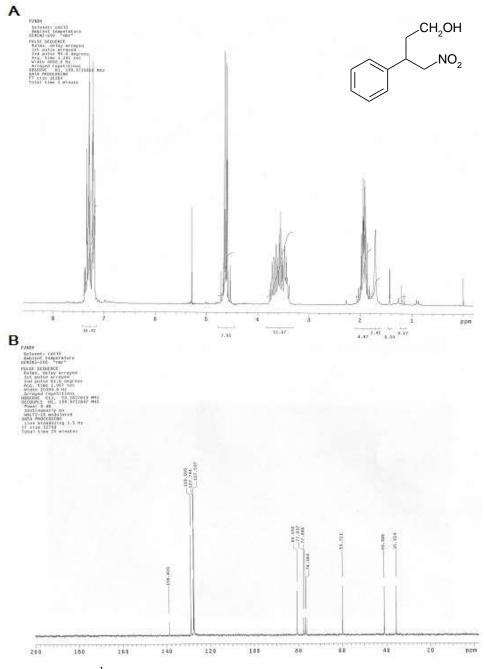


Fig. S2-A. A)¹H NMR spectrum of prepared 4-nitro-3-phenylbutanol (200 MHz): 7.38-7.18 (m, 5H); 4.71-4.53 (m, 2H); 3.76-3.40 (m, 3H); 2.05-1.80 (m, 2H), 1.71 (s, 1H). B) ¹³C NMR (50 MHz): 138.8; 129.0; 127.7; 127.5; 80.5; 59.7; 41.0; 35.5.

B) 4-amino-3-phenylbutanol (10) 3

A mixture of 4-nitro-3-phenylbutanol (20 mg, 0.1 mmol) and 10% Pd(OH)₂ on carbon (10 mg) in anhydrous methanol (20 ml) was hydrogenated at 60 psi for 4 h using Parr apparatus. The solution was filtered and concentrated to give 4-amino-3-phenylbtanol as viscous oil (17 mg, 99%).

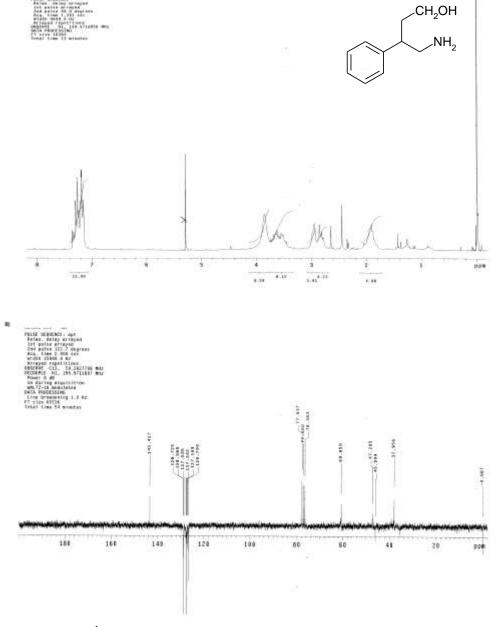
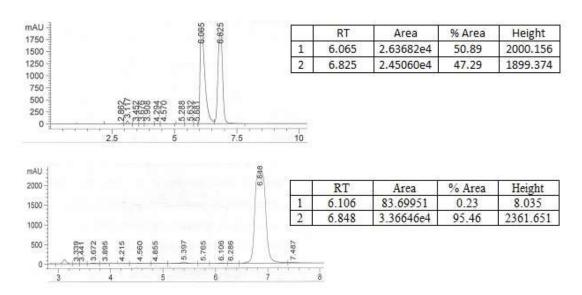


Fig. S2-B. A)¹H NMR spectrum of prepared 4-amino-3-phenylbutanol (**10**). B) ¹³C NMR (50 MHz): 143.4; 128.7; 127.5; 126.7 60.7; 47.2; 46.0; 38.0.

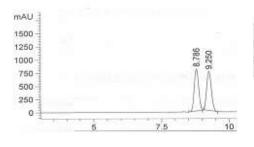
S3(A-D) Chiral analysis of biotransformation products

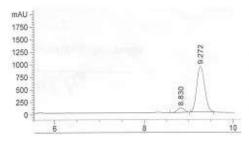

All biotransformation products (3, 5, 7 and 9) were firstly reduced to alcohols by the procedure described under S2-A due to the instability upon storage at -20°C.

Racemic mixture of the samples was prepared chemically from the corresponding aldehydes using the same procedure. The enantiomeric excess was determined by HPLC (Agilent Technologies, HP110) with CHIRALPAK IA column (Chiral Technologies Europe, Cedex, France) at 210 nm for all samples.

A) 4-nitro-3-phenylbutan-1-ol (obtained from biotransformation product 3)

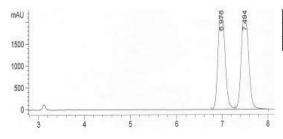
 $[\alpha]D^{25} = -22.0$ (c 1.0, CH₂Cl₂, >99% ee).

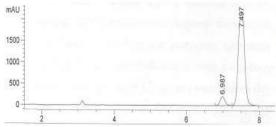

HPLC conditions:heptane/iPrOH in the ratio of 80/20, flow rate =1.0 ml/min (tr=6.06 min, tr=6.83 major), ee >99%.


B) 3-(4-chlorophenyl)-4-nitrobutan-1-ol (obtained from biotransformation product 5) 4

[α]D ²⁵ = -11.5 (c 2.0, CH₂Cl₂, 84% ee). ¹H NMR (200 MHz): 7.35-7.27 (m, 2H); 7.19-7.14 (m, 2H); 4.71-4.52 (m, 2H); 3.77-3.56 (m, 2H); 3.51-3.39 (m, 1H);

2.06-1.79 (m, 2H); 1.68 (s, 1H). ¹³C NMR (50 MHz): 137.4; 133.5; 129.2; 128.9; 80.3; 59.5; 40.4; 35.4. HPLC conditions: heptane/ethanol in the ratio of 80/20, flow rate =1.0 ml/min (tr=8.83 min, tr=9.27 major), ee 84%.

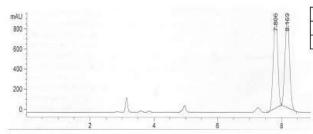

	RT	Area	% Area	Height
1	8.786	9066.4082	50.25	799.410
2	9.250	8975.3701	49.74	739.918


	RT	Area	% Area	Height
1	8.830	948.6715	7.761	89.732
2	9.272	1.12738e4	92.238	905.526

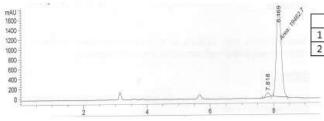
C) 3-(2-chlorophenyl)-4-nitrobutan-1-ol (obtained from biotransformation product 7)

 $[\alpha]_D^{25}$ = +4 (c 1.0, CH₂Cl₂, 88% ee). ¹H NMR (200 MHz): 7.44-7.39 (m, 1H); 7.28-7.18 (m, 3H); 4.81-4.64 (m, 2H); 4.36-4.21 (m, 1H); 3.69-3.49 (m, 2H); 2.08-1.98 (m, 2H); 1.60 (s, 1H). ¹³C NMR (50 MHz): 136.3; 134.2; 130.4; 128.9; 128.2; 127.5; 78.9; 59.9; 37.3; 34.7. HPLC conditions: heptane/iPrOH in the ratio of 80/20, flow rate =1.0 ml/min (tr=6.98 min, tr=7.50 major), ee 88%.

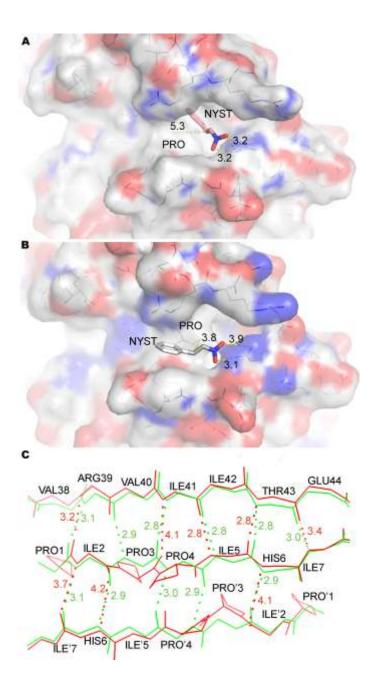
	RT	Area	% Area	Height
1	6.978	2.38763e4	49.237	2168.684
2	7.494	2.46157e4	50.762	2130.952



	RT	Area	% Area	Height
1	6.987	1989.6008	6.964	213.228
2	7.497	2.65793e4	93.036	2205.303


D) 3-(4-fluorophenyl)-4-nitrobutan-1-ol (obtained from biotransformation product 9)

 $[\alpha]_D^{25} = -10$ (c 1.0, CH₂Cl₂, 94% ee). ¹H NMR (200 MHz): 7.27-7.16 (m, 2H); 7.09-6.98 (m, 2H); 4.72-4.52 (m, 2H); 3.80-3.59 (m, 2H); 3.54-3.42 (m, 1H); 2.07-1.78 (m, 2H); 1.58 (s, 1H). ¹³C NMR (50 MHz): 137.9; 134.5; 129.2; 129.1; 80.6; 59.7; 40.3; 35.6.


HPLC conditions: heptane/ethanol in the ratio of 80/20, flow rate =1.0 ml/min (tr=7.81 min, tr=8.17 major), ee 94%.

X 1	RT	Area	% Area	Height
1	7.806	1048.9473	49.557	110.99449
2	8.170	1067.6752	50.442	106.31933

	RT	Area	% Area	Height
1	7.818	692.28418	3.434	85.04726
2	8 169	1 9462764	96 565	1751 9398

S4. A) Nitrostyrene (NYST) in stick representation positioned in the reactive center of wild type tautomerase (line and surface representation). B) Nitrostyrene (NYST) positioned in the reactive center of 4-OT_P mutant (line and surface representation). Distances to ARG'11 residue and acetaldehyde bonded to the terminal PRO are given. C) Backbone representation of the wild type (green) and 4-OT_2P variant (red) tautomerase with the first β -plate in the center. Only Proline residues are shown with the side chains and only the variant residues are labelled. Distances between hydrogen bond forming peptide bond oxygen and nitrogen atoms together with their distances are provided.

References

- 1. Wang, Y.; Li, P.; Liang, X.; Zhang, T. Y.; Ye, J., An efficient enantioselective method for asymmetric Michael addition of nitroalkanes to α,β -unsaturated aldehydes. *Chem. Commun.* **2008**, 2008, 1232-1234.
- 2. Palomo, C.; Landa, A.; Mielgo, A., Water-compatible iminium activation: Organocatalytic Michael reactions of carbon-centered nucleophiles with enals. *Angew Chem Int Ed* **2007**, *46*, 8431-8435.
- 3. Jullian, V.; Quirion, J.-C.; Husson, H.-P., Enantioselective synthesis of β -substituted primary and secondary amines by alkylation of (R)-phenylglycinol amide enolates. *Synthesis* **1997**, *1997*, 1091-1097.
- 4. Qiao, Y.; He, J.; Ni, B.; Headley, A. D., Asymmetric Michael reaction of acetaldehyde with nitroolefins catalyzed by highly water-compatible organocatalysts in aqueous media. *Adv. Synth. Catal.* **2012**, *354*, 2849-2853.