Supplementary information for the paper under the title:

A Useful Synthetic Equivalent of a Hydroxyacetone Enolate

Miljan Bigovic,^a Veselin Maslak,^a Zorana Tokic-Vujosevic,^b Vladimir Divjakovic^c and Radomir N. Saicic*.^a

^{a)} Faculty of Chemistry, University of Belgrade, Studentski trg 16, P. O. B. 51, 11158 Belgrade, Serbia, Fax: (+381) 11 32 82 537, E-mail: rsaicic@chem.bg.ac.rs

^{b)} Faculty of Pharmacy, Vojvode Stepe 450, Belgrade

^{c)} Faculty of Science, Trg Dositeja Obradovica 3, 21000 Novi Sad

Table of content

General experimental	S2
Synthesis of 4-(bromomethyl)-1,3-dioxol-2-one 1	S3
4-Methyl-1,3-dioxol-2-one	S3
4-(Bromomethyl)-1,3-dioxol-2-one 1	S3
General procedure for the allylation of carbonyl compounds	S4
with 4-(bromomethyl)-1,3-dioxol-2-one 1	
Promoted by indium	S4
Promoted by zinc	S4
4-(Hydroxy(phenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2a	S4
4-(Hydroxy(2-methoxyphenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2b	S5
4-(Hydroxy(4-methoxyphenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2c	S5
4-(Benzo[<i>d</i>][1,3]dioxol-5-yl(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2d	S5
4-((4-Chlorophenyl)(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2e	S6
4-(Hydroxy(1 <i>H</i> -indol-3-yl)methyl)-5-methylene-1,3-dioxolan-2-one 2f	S6
4-(Furan-3-yl(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2g	S6
4-(Hydroxy(thiophen-3-yl)methyl)-5-methylene-1,3-dioxolan-2-one 2h	S7
4-(1-Hydroxyheptyl)-5-methylene-1,3-dioxolan-2-one 2i	S7
(E)-4-(1-Hydroxybut-2-en-1-yl)-5-methylene-1,3-dioxolan-2-one 2j	S7
(<i>E</i>)-4-(1-hydroxy-3-phenylallyl)-5-methylene-1,3-dioxolan-2-one 2k	S8
4-(2-(Benzyloxy)-1-hydroxyethyl)-5-methylene-1,3-dioxolan-2-one 2I	S8
(2R,3R,4R,5S)-5-Hydroxy-5-((S)-5-methylene-2-oxo-1,3-dioxolan-4-yl)pentane-	S8
1,2,3,4-tetrayl tetraacetate 2m	

(S)-Tert-butyl 4-((R)-hydroxy((R)-5-methylene-2-oxo-1,3-dioxolan-4-yl)methyl)-2,2-	S9
-dimethyloxazolidine-3-carboxylate 2n (SRR) and (S)-Tert-butyl	
4-((S)-hydroxy((S)-5-methylene-2-oxo-1,3-dioxolan-4-yl)methyl)-2,2-	
dimethyloxazolidine-3-carboxylate 2n (<i>SRR</i>)	
4-(1-Hydroxycyclohexyl)-5-methylene-1,3-dioxolan-2-one 2o	S9
anti-Methyl 2-hydroxy-2-(5-methylene-2-oxo-1,3-dioxolan-4-yl)propanoate 2p and	S10
trans-methyl 5-acetyl-4-methyl-2-oxo-1,3-dioxolane-4-carboxylate 2q	
General procedure for the deprotection of enol carbonates 2 into α , β -dihydroxy ketones 3	S10
anti-3,4-Dihydroxy-4-phenylbutan-2-one 3a	S10
anti-3,4-Dihydroxy-4-(4-methoxyphenyl)butan-2-one 3c	S11
anti-4-(Benzo[d][1,3]dioxol-5-yl)-3,4-dihydroxybutan-2-one 3d	S11
anti-3,4-Dihydroxy-4-(4-chlorophenyl)butan-2-one 3e	S11
anti-3,4-Dihydroxydecan-2-one 3i	S11
General procedure for the rearrangement of enol carbonates 2 into cis cyclic carbonates	S12
<i>cis</i> -4-Acetyl-5-phenyl-1,3-dioxolan-2-one 4a	S12
<i>cis</i> -4-Acetyl-5-(4-methoxyphenyl)-1,3-dioxolan-2-one 4c	S12
<i>cis</i> -4-Acetyl-5-(benzo[<i>d</i>][1,3]dioxol-5-yl)-1,3-dioxolan-2-one 4d	S12
cis-4-Acetyl-5-(4-chlorophenyl)-1,3-dioxolan-2-one 4e	S13
<i>cis</i> -4-Acetyl-5-hexyl-1,3-dioxolan-2-one 4i	S13
4-Acetyl-5-((<i>E</i>)-prop-1-en-1-yl)-1,3-dioxolan-2-one: <i>cis</i> isomer 4j and <i>trans</i> isomer 5 j	S13
(<i>E</i>)-4-Acetyl-5-styryl-1,3-dioxolan-2-one: <i>cis</i> isomer 4k and <i>trans</i> isomer 5k	S14
(1S,2R,3R)-1-((4S,5S)-5-acetyl-2-oxo-1,3-dioxolan-4-yl)butane-1,2,3,4-tetrayl tetraacetate 4m	S14
General procedure for the rearrangement of enol carbonates 2 into trans cyclic carbonates 5	S14
trans-4-Acetyl-5-(benzo[d][1,3]dioxol-5-yl)-1,3-dioxolan-2-one 5d and	S15
4-(benzo[d][1,3]dioxol-5-yl)-4-hydroxybut-3-en-2-one 6	
trans-4-Acetyl-5-(4-chlorophenyl)-1,3-dioxolan-2-one 5e	S15
References	S15
Scanned spectra	S17

General experimental

All chromatographic separations¹ were performed on Silica, 10-18, 60A, ICN Biomedicals. Standard techniques were used for the purification of reagents and solvents.² Indium was obtained from Aldrich (cat. No. 277959, 99.99% pure, with 1% Mg as anticaking agent). NMR spectra were recorded on a Varian Gemini 200, (¹H NMR at 200 MHz, ¹³C NMR at 50 MHz, for samples in deuterated chloroform), and on Bruker Avance III 500 (¹H NMR at 500 MHz, ¹³C NMR at 125 MHz). Chemical shifts are expressed in ppm (δ) using tetramethylsilane as internal standard, coupling constants (*J*) are in Hz. IR spectra were recorded on a Nicolet 6700 FT instrument, and are expressed in cm⁻¹. Mass spectra were obtained on Agilent technologies 6210 TOF LC/MS instrument (LC: series 1200). Microanalyses were performed at the Vario EL III instrument CHNOS Elementar Analyzer, Elementar

Analysensysteme GmbH, Hanau-Germany. Melting points were determined on a Kofler hot-stage apparatus and are uncorrected. 1-Tosyl-1H-indole-3-carbaldehyde³ and enantiomerically pure 2,3,4,5-tetra-*O*-acetyl-D-arabinose⁴ were prepared according to literature procedures.

X-ray crystal structure determination

A single colorless crystal was selected and glued on glass fiber. Diffraction data were collected on an Oxford Diffraction KM4 four-circle goniometer equipped with Sapphire CCD detector. The crystal to detector distance was 45.0 mm and a graphite monochromated MoK α (λ = 0.71073 Å) X-radiation was employed in the measurements. The frame widths of 1° in ω , with 19 and 27 s were used to acquire each frame. More than a hemisphere of three-dimensional data was collected in all measurements. The data were reduced using the Oxford Diffraction program CrysAlis^{Pro}. A semiempirical absorption-correction based upon the intensities of equivalent reflections was applied, and the data were corrected for Lorentz, polarization, and background effects. Scattering curves for neutral atoms, together with anomalous-dispersion corrections, were taken from International Tables for X-ray Crystallography.⁵ The structures were solved by direct methods,⁶ and the figures were drawn using MERCURY.⁷ Refinements were based on F^2 values and done by full-matrix least-squares⁸ with all non-H atoms anisotropic. The positions of all non H-atoms were located by direct methods. The positions of hydrogen atoms were found from the inspection of the difference Fourier maps. The final refinement included atomic positional and displacement parameters for all non-H atoms. The non-H atoms were refined anisotropically. However, at the final stage of the refinement, H atoms belonging to molecules were positioned geometrically (O-H = 0.82 and C-H = 0.93-0.97 Å) and refined using a riding model with fixed isotropic displacement parameters.

4-Methyl-1,3-dioxol-2-one

This compound was obtained in two steps, from hydroxyacetone, according to the modified literature procedure described for the preparation of the 4,5-dimethyl derivative.⁹ Triphosgene (3.0 g; 11 mmol) was added to a cold (0 °C) solution of hydroxyacetone (2.1 g; 28 mmol) in dichloroethane (20 mL), followed by a dropwise addition of *N*,*N*-dimethylaniline (3.7 g; 4 mL; 30 mmol), while maintaining temperature below 8 °C.The reaction mixture was stirred for 15 min at 0 °C, then two more hours at rt. The reaction mixture was cooled to 5 °C, washed with cold 3 M aqueous hydrochloric acid (40 mL), water (30 mL) and brine (30 mL), dried over anh. MgSO₄, filtered and concentrated under reduced pressure to the half of the initial volume. The residue was heated to reflux for three hours. The solvent was completely removed at rotavap, and the remaining oil was heated in a stream of argon to 170 °C, for two and half hours, when considerable darkening occurs. The crude mixture was distilled under reduced pressure, to give 1.4 g (52%) of 4-methyl-1,3-dioxol-2-one, bp 130-140 °C/30 mmHg, as a light-yellow oil. Although the compound has been mentioned in the literature,¹⁰ no spectral data were given: IR_{film}: 3169, 2934, 1828, 1801, 1124, 1071. ¹H NMR: 6.84 (q, *J*=1.6, H); 2.13 (d, *J*=1.6, 3H). ¹³C NMR: 153.4 (C); 141.1 (C); 126.0 (CH); 9.7 (CH₃). Anal. calcd. for C₄H₄O₃: C 48.00; H 4.00; found: C 47.93; H 4.16.

4-(Bromomethyl)-1,3-dioxol-2-one 1

This compound was obtained according to the literature procedure.¹¹ A mixture of 4-methyl-1,3-dioxol-2-one (1 g; 10 mmol), *N*-bromosuccinimide (2.3 g; 13 mmol), azo-bis-isobutyronitrile (AIBN; 10 mg) and carbon tetrachloride (40 mL) was heated to reflux for 1.5 h. The reaction mixture was concentrated to the half of the initial volume, filtered, concentrated at rotavap and distilled under reduced pressure, to give 1.3 g (72%) of 4-(bromomethyl)-1,3-dioxol-2-one **1**, as a light-yellow oil, bp 100-110 °C/1 mmHg). No ¹³C NMR data are provided in the literature, and the literature ¹H NMR was

recorded in CCl₄: IR_{film}: 3169, 2934, 1828, 1801, 1124, 1071. ¹H NMR (CDCl₃): 7.12 (t, *J*=1.2, H), 4.19 (d, *J*=1.2, 2H) ¹³C NMR: 153.4 (C); 141.1 (C); 126.0 (CH); 9.7 (CH₃). Anal. calcd. for C₄H₃BrO₃: C 26.82; H 1.68; Found: C 26.74; H 1.81.

Due to a ban on the use of carbon tetrachloride, the possibility of using other solvents was investigated. The reaction could be performed in an analogous way in 1,2-dichloroethane: under these conditions 4-(bromomethyl)-1,3-dioxol-2-one **1** was obtained in 49% yield.

General procedure for the allylation of carbonyl compounds with 4-(bromomethyl)-1,3-dioxol-

2-one 1

Indium-promoted allylation

Aldehyde (0.19 mmol) was added to a mixture of **1** (50 mg; 0.28 mmol), indium (32.1 mg; 0.28 mmol), THF (0.5 mL) and water (1 mL), and the reaction mixture was stirred at rt. The reaction was monitored by TLC (eluent: 20% acetone in petroleum-ether) and it was usually complete after 15 min. The reaction mixture was diluted with dichloromethane (5 mL) and water (5 mL), the aqueous layer was extracted with dichloromethane (2 x 5 mL), combined organic extracts were dried over anh. MgSO₄, filtered, concentrated under reduced pressure and the crude product was purified by dry-flash chromatography.

Zinc-promoted allylation

Aldehyde (0.09 mmol) was added to a mixture of **1** (50 mg; 0.28 mmol), zinc (23 mg; 0.36 mmol), THF (0.2 mL) and saturated aqueous solution of NH_4CI (0.8 mL), and the reaction mixture was stirred at rt. The reaction was monitored by TLC (eluent: 20% acetone in petroleum-ether) and it was usually complete after 30 min. Work-up as previously described provided the crude product, which was purified by dry-flash chromatography.

4-(Hydroxy(phenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2a

According to the general procedure for the indium-mediated allylation, starting from benzaldehyde (19.7 mg, 19 μ L, 0.19 mmol); after purification by column chromatography (eluent: 20% acetone in hexanes), 37.7 mg (96%) of the title compound **2a** was obtained, as a mixture of diastereoisomers in a ratio *anti:syn*=12:1. Recrystallization from 5% EtOAc in hexanes afforded white crystals of pure **2a***anti*, mp 70-71 °C. FT-IR (KBr): 3477, 3064, 2891, 1832, 1690, 1341, 1280, 1147, 1062, 766, 708. ¹H NMR δ : 7.43-7.31 (m, 5H), 5.28 (ddd, J_1 =4.1, J_2 =2.3, J_3 =1.7, 1H), 5.14 (bt, J=4.1, 1H), 4.78 (dd, J_1 =3.9, J_2 =2.3, 1H), 3.87 (dd, J_1 =3.9, J_2 =1.7, 1H), 2.78 (d, J=4.1, 1H). ¹³C NMR δ : 152.3 (C), 148.6 (C), 136.1 (C), 128.7 (CH), 128.6 (CH), 126.4 (CH), 89.7 (CH₂), 82.3 (CH), 73.4 (CH). HRMS (ESI): calcd. for [C₁₁H₁₀O₄ + NH₄⁺]: 224.0923, found for [M+NH₄]⁺: 224.0911. Anal. calcd. for C₁₁H₁₀O₄: C 64.08, H 4.85; found: C 63.81, H 4.73.

4-(Hydroxy(2-methoxyphenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2b

According to the general procedure for the indium-mediated allylation, starting from 2-methoxybenzaldehyde (38 mg, 0.28 mmol); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 38 mg (57%) of 2b-anti, followed by 29 mg (39%) of 2b-syn (Combined vield: 63.4 mg; 96%). Physical data for 2b-anti: recrystallized from 5% EtOAc in hexanes, white solid, mp 106-108 °C. FT-IR (KBr): 3487, 3011, 2969, 1809, 1690, 1492, 1346, 1248, 1158, 1054, 756. ¹H NMR δ : 7.48-7.46 (m, 1H), 7.35-7.32 (m, 1H), 7.01 (td, J_1 =7.9, J_2 =0.7, 1H), 6.90 (dd, J_1 =7.9, J_2 =1.3, 1H), 5.42 (ddd, J_1 =3.3, J_2 =2.2, J_3 =1.5, 1H), 5.38 (dd, J_1 =5.7, J_2 =3.3, 1H), 4.76 (dd, J_1 =3.7, J_2 =2.2, 1H), 3.87 (s, 3H), 3.68 (dd, J_1 =3.7, J_2 =1.5, 1H), 3.02 (d, J=5.7, 1H). ¹³C NMR δ : 155.7 (C), 152.7 (C), 149.0 (C), 129.6 (CH), 128.0 (CH), 124.1 (C), 120.7 (CH), 110.1 (CH), 89.3 (CH₂), 80.5 (CH), 69.5 (CH), 55.4 (CH₃). HRMS (ESI): calcd. for $[C_{12}H_{12}O_5 + NH_4^+]$: 254.1028, found for $[M+NH_4]^+$: 254.1026. Anal. calcd. for C12H12O5: C 61.02, H 5.08; found: C 60.68; H 5.14. Physical data for 2b-syn: recrystallized from 5% EtOAc in hexanes, white solid, mp 80 °C. FT-IR (KBr): 3462, 3072, 2970, 1807, 1684, 1603, 1493, 1463, 1359, 1236, 1164, 1084, 1050, 848, 763. ¹H NMR δ: 7.44 (dd, *J*₁=7.8, $J_2=1.5, 1H$, 7.36-7.32 (m, 1H), 7.02 (td, $J_1=7.8, J_2=0.7, 1H$), 6.93-6.91 (m, 1H), 5.36 (ddd, $J_1=3.7, 1H$) $J_2=2.0, J_3=1.7, 1H$), 5.17 (dd, $J_1=6.0, J_2=3.7, 1H$), 4.90 (dd, $J_1=3.9, J_2=2.0, 1H$), 4.25 (dd, $J_1=3.9, J_2=2.0, 1H$), 4.25 (dd, $J_2=3.9, J_2=2.0, 1H$), 4.25 (dd, $J_3=3.9, J_2=2.0, 1H$), 4.25 (dd, $J_4=3.9, J_2=3.7, 1H$), 4.90 (dd, $J_4=3.9, J_2=3.7, IH$), 4.90 (dd, $J_4=3.9, J_4=3.9, J_4=3$ J₂=1.7, 1H), 3.87 (s, 3H), 2.82 (d, J=6.0, 1H). ¹³C NMR δ: 156.1 (C), 152.1 (C), 151.0 (C), 129.8 (CH), 128.0 (CH), 125.3 (C), 121.0 (CH), 110.5 (CH), 87.7 (CH₂), 81.5 (CH), 71.1 (CH), 55.5 (CH₃). HRMS (ESI): calcd. for C₁₂H₁₂O₅: 236.0685, found for [M]⁺: 236.0677. Anal. calcd. for C₁₂H₁₂O₅: C 61.02, H 5.08; found: C 60.77, H 5.26.

4-(Hydroxy(4-methoxyphenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2c

According to the general procedure for the indium-mediated allylation, starting from 4-methoxybenzaldehyde (25.8 mg, 23 µl, 0.19 mmol); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 36.6 mg (82 %) of the title compound **2c**, as a mixture of diastereoisomers in a ratio *anti:syn*=8:1 (the ratio of diastereoisomers did not change after crystallization from 5% EtOAc in hexanes). White crystals, m.p. 60-2 °C. Spectral data for **2c**: FT-IR (KBr): 3478, 3013, 2960, 1828, 1690, 1514, 1250, 1145, 1055, 849, 764. ¹H NMR δ : 7.29 (d, *J*=9.0, 2H), 6.90 (d, *J*=9.0, 2H), 5.25 (ddd, *J*₁=4.0, *J*₂=2.2, *J*₃=1.8, 1H), 5.03 (bt, *J*₁=4.0, 1H), 4.81 (dd, *J*₁=3.4, *J*₂=2.2, 1H), 3.95 (dd, *J*₁=3.4, *J*₂=1.8, 1H), 3.80 (s, 3H), 3.26 (d, *J*=4.0, 1H). ¹³C NMR δ : 159.8 (C), 148.8 (C), 128.5 (C), 128.2 (C), 127.8 (CH), 113.9 (CH), 89.5 (CH₂), 82.3 (CH), 73.2 (CH), 55.2 (CH₃). HRMS (ESI): calcd. for [C₁₂H₁₂O₅ + Na⁺]: 259.0582, found for [M+Na]⁺: 259.0577.

4-(Benzo[d][1,3]dioxol-5-yl(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2d

According to the general procedure for the indium-mediated allylation, starting from piperonal (28 mg, 0.19 mmol); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 45.2 mg (95%) of the title compound **2d**, as a mixture of diastereoisomers in a ratio *anti:syn*=6:1. White crystals (recrystallized from 10% EtOAc in petroleum-ether), m.p. 103-4 °C. Spectral data for **2d**: FT-IR (KBr): 3455, 3020, 2909, 1825, 1695, 1499, 1338, 1246, 1160, 1062, 1036, 931, 865, 742. ¹H NMR $\overline{0}$: 6.89-6.82 (m, 3H), 5.99 (bs, 2H), 5.21 (ddd, J_1 =4.2, J_2 =2.3, J_3 =1.9, 1H), 5.00 (bt, J=4.2, 1H), 4.87 (dd, J_1 =3.8, J_2 =2.3, 1H), 4.05 (dd, J_1 =3.8, J_2 =1.9, 1H), 2.51 (bd, J=4.2, 1H). ¹³C NMR $\overline{0}$: 152.0 (C), 148.8 (C), 148.0 (C), 148.0 (C), 130.1 (C), 120.1 (CH), 108.4 (CH), 106.9 (CH), 101.4

 (CH_2) , 89.8 (CH_2) , 82.0 (CH), 73.6 (CH). HRMS (ESI): calcd. for $[C_{12}H_{10}O_6 + Na^+]$: 273.0375, found for $[M+Na]^+$: 273.0356. Anal. calcd. for $C_{12}H_{10}O_6$: C 57.60, H 4.00; found: C 57.29, H 4.25.

4-((4-Chlorophenyl)(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2e

According to the general procedure for the indium-mediated allylation, starting from 4-chlorobenzaldehyde (33 mg, 0.23 mmol); purification by column chromatography (eluent: 30% acetone in petroleum-ether) afforded 52.8 mg (96%) of the title compound **2e**, as a mixture of diastereoisomers in a ratio *anti:syn*=7:1. Monocrystal of pure **2e**-*anti*, suitable for X-ray crystallographic analysis, was obtained by crystallization from 5% EtOAc in hexanes. Physical data for **2e**-*anti*: white, crystalline compound, mp 88-90 °C. FT-IR (KBr): 3847, 3075, 2983, 1816, 1691, 1342, 1154, 1062, 871, 744. ¹H NMR δ : 7.39 (d, *J*=8.5, 2H), 7.34 (d, *J*=8.5, 2H), 5.24 (ddd, *J*₁=4.4, *J*₂=2.0, *J*₃=1.8, 1H), 5.11 (bt, *J*=4.4, 1H), 4.84 (dd, *J*₁=4.0, *J*₂=2.0, 1H), 3.91 (dd, *J*₁=4.0, *J*₂=1.8, 1H), 2.96 (d, *J*=4.4, 1H). ¹³C NMR δ : 152.2 (C), 148.4 (C), 134.7 (C), 134.6 (C), 128.8 (CH), 127.9 (CH), 89.9 (CH₂), 82.0 (CH), 72.9 (CH). HRMS (ESI): calcd. for [C₁₁H₉O₄Cl + Na⁺]: 263.0087, found for [M+Na]⁺: 263.0083. Anal. calcd. for C₁₁H₉O₄Cl: C 54.88, H 3.74; found: C 54.67, H 3.79.

4-(Hydroxy(1-tosyl-1H-indol-3-yl)methyl)-5-methylene-1,3-dioxolan-2-one 2f

According to the general procedure for the indium-mediated allylation, starting from 1-tosyl-1*H*-indole-3-carbaldehyde (23 mg, 77 μ mol); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 23 mg (78%) of the title compound **2f**. Physical data for **2f**: pale-yellow oil, FT-IR (film): 3483, 3058, 2927, 1833, 1690, 1447, 1370, 1274, 1173, 1126, 1065, 744, 674, 574. ¹H NMR $\overline{\delta}$: 8.03 (d, *J*=8.4, 1H), 7.78 (d, *J*=7.8, 2H), 7.86 (s, 1H), 7.53 (d, *J*=7.8, 1H), 7.41-7.22 (m, 4H), 5.35 (bs, 2H), 4.78-4.76 (m, 1H), 3.79-3.76 (m, 1H), 2.77 (bs, 1H), 2.35 (s, 3H). ¹³C NMR $\overline{\delta}$: 152.2 (C), 148.3 (C), 145.4 (C), 135.2 (C), 134.7 (C), 130.0 (C), 127.7 (C), 126.9 (CH), 125.4 (CH), 125.2 (CH), 123.7 (CH), 119.4 (CH), 118.3 (CH), 114.0 (CH), 89.8 (CH₂), 80.6 (CH), 68.4 (CH), 21.5 (CH₃). HRMS (ESI): calcd. for [C₂₀H₁₇NO₆S + Na⁺]: 422.0674, found for [M+Na]⁺: 422.0683.

4-(Furan-2-yl(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2g

According to the general procedure for the indium-mediated allylation, starting from furane-2-carbaldehyde (18.2 mg, 0.19 mmol); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 21 mg (56%) of **2g-anti**, followed by 10 mg (27%) of **2g-syn** (combined yield: 83%). Physical data for **2g-anti**: colorless oil. FT-IR (film): 3460, 2925, 1827, 1692, 1345, 1271, 1144, 1061, 859, 749. ¹H NMR δ : 7.45 (dd, J_1 =1.9, J_2 =0.9, 1H), 6.46-6.45 (m, J_1 =3.3, J_2 =0.9, 1H), 6.42 (dd, J_1 =3.3, J_2 =1.9, 1H), 5.45 (ddd, J_1 =3.7, J_2 =2.2, J_3 =2.0, 1H), 5.08 (ddd, J_1 =6.8, J_2 =3.7, J_3 =0.7, 1H), 4.90 (dd, J_1 =3.9, J_2 =2.2, 1H), 4.10 (dd, J_1 =3.9, J_2 =2.0, 1H), 2.57 (d, J=6.8, 1H). ¹³C NMR δ : 151.8 (C), 149.8 (C), 148.5 (C), 143.0 (CH), 110.8 (CH), 109.1 (CH), 89.5 (CH₂), 80.2 (CH), 68.9 (CH). HRMS (ESI): calcd. for [C₉H₈O₅ + CH₃COO]: 255.0505, found for [M+CH₃COO]: 255.0518. Physical data for **2g-syn**: colorless oil. FT-IR (film): 3461, 2926, 1823, 1692, 1352, 1278, 1148, 1072, 860, 747. ¹H NMR δ : 7.45 (dd, J_1 =1.8, J_2 =1.0, 1H), 6.48 (dt, J_1 =2.6, J_2 =1.0, 1H), 6.42 (dd, J_1 =2.6, J_2 =1.8, 1H), 5.42 (ddd, J_1 =4.9, J_2 =2.3, J_3 =2.0, 1H), 4.93 (dd, J_1 =4.2, J_2 =2.3, 1H), 4.91 (t, J=4.9, 1H), 4.22 (dd, J_1 =4.2, J_2 =2.0, 1H), 2.56 (d, J=4.9, 1H). ¹³C NMR δ : 151.6 (C), 149.9 (C), 149.6 (C), 143.2 (CH), 110.8 (CH), 109.6 (CH), 88.8 (CH₂), 80.1 (CH), 69.1 (CH). HRMS (ESI): calcd. for [C₉H₈O₅ + HCOO]: 241.0348, found for [M+HCOO]: 241.0358.

4-(Hydroxy(thiophen-2-yl)methyl)-5-methylene-1,3-dioxolan-2-one 2h

According to the general procedure for the indium-mediated allylation, starting from thiophene-2-carbaldehyde (21 mg, 0.19 mmol); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 36.5 mg (91%) of **2h**, as a mixture of diastereoisomers in a ratio *anti:syn*=6.4:1.

Physical data for **2h**: pale-yellow oil, FT-IR (film): 3462, 3111, 3023, 1828, 1691, 1346, 1273, 1145, 1057, 856, 709. ¹H NMR δ: 7.34 (dd, J_1 =1.8, J_2 =1.6, 1H), 7.09-7.02 (m, 2H), 5.36-5.27 (m, 2H), 4.88 (dd, J_1 =3.6, J_2 =1.9, 1H), 4.12 (dd, J_1 =3.6, J_2 =1.6, 1H), 3.29 (d, J=5.0, 1H). ¹³C NMR δ: 152.1 (C), 148.5 (C), 139.6 (C), 127.3 (CH), 126.1 (CH), 125.4 (CH), 89.9 (CH₂), 81.9 (CH), 70.8 (CH). HRMS (ESI): calcd. for [C₉H₈O₄S + Na⁺]: 235.0041, found for [M+Na]⁺: 235.0027.

4-(1-Hydroxyheptyl)-5-methylene-1,3-dioxolan-2-one 2i

According to the general procedure for the indium-mediated allylation, starting from heptanal (16 mg, 0.14 mmol); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 26.4 mg (88%) of **2i**, as an unseparable mixture of diastereoisomers in a ratio *anti:syn*=6:1. Physical data for **2i**: colorless oil, FT-IR (film): 3479, 2930, 2856, 1831, 1690, 1463, 1348, 1157, 1069. ¹H NMR δ : 5.04 (ddd, J_1 =3.8, J_2 =2.2, J_3 =1.9, 1H), 4.97 (dd, J_1 =3.8, J_2 =2.2, 1H), 4.49 (dd, J_1 =3.8, J_2 =1.9, 1H), 3.84 (s, 1H), 2.42 (s, 1H), 1.58-1.54 (m, 2H), 1.36-1.30 (m, 8H), 0.89 (t, J=6.8, 3H). ¹³C NMR δ : 152.3 (C), 149.9 (C), 89.0 (CH₂), 82.0 (CH), 72.0 (CH), 31.6 (CH₂), 31.0 (CH₂), 29.0 (CH₂), 25.3 (CH₂), 22.5 (CH₂), 14.0 (CH₃). HRMS (ESI): calcd. for [C₁₁H₁₈O₄ + NH₄⁺]: 232.1549, found for [M+NH₄]⁺: 232.1531.

(E)-4-(1-Hydroxybut-2-en-1-yl)-5-methylene-1,3-dioxolan-2-one 2j

According to the general procedure for the indium-mediated allylation, starting from crotonaldehyde (13 mg, 0.19 mmol), purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 26.4 mg (82%) of **2**j, as an unseparable, equimolar mixture of diastereoisomers. Physical data for **2**j: colorless oil, FT-IR (film): 3464, 3025, 2920, 1825, 1690, 1448, 1348, 1276, 1146, 1067, 971. ¹H NMR δ : 5.96-5.88 (m, 2H, *anti*, *syn*), 5.55 (ddq, J_1 =15.0, J_2 =3.0, J_3 =1.5, 1H, *anti*), 5.49 (ddq, J_1 =15.5, J_2 =3.5, J_3 =1.8, 1H, *syn*), 5.09 (ddd, J_1 =5.5, J_2 =3.0, J_3 =1.5, 1H, *syn*), 5.07 (ddd, J_1 =4.3, J_2 =2.5, J_3 =1.3, 1H, *anti*), 4.95 (dd, J_1 =2.3, J_2 =1.5, 1H, *anti*), 4.94 (dd, J_1 =2.3, J_2 =1.3, 1H, *syn*), 4.52 (dd, J_1 =3.0, J_2 =4.3, 1H, *anti*), 2.45 (bs, 1H, *syn*), 2.30 (bs, 1H, *anti*), 1.78-1.76 (m, 6H, *anti*, *syn*). ¹³C NMR δ : **2***j*-*anti*: 152.1 (C), 150.2 (C), 132.9 (CH), 126.3 (CH), 88.4 (CH₂), 81.2 (CH), 73.4 (CH), 17.8 (CH₃); **2***j*-*syn*: 152.2 (C), 149.4 (C), 131.9 (CH), 125.4 (CH), 89.0 (CH₂), 81.7 (CH), 72.8 (CH), 17.8 (CH₃). HRMS (ESI): calcd. for [C₈H₁₀O₄ + NH₄⁺]: 188.0923, found for [M+NH₄]⁺: 188.0914.

(E)-4-(1-hydroxy-3-phenylallyl)-5-methylene-1,3-dioxolan-2-one 2k

According to the general procedure for the indium-mediated allylation, starting from cinnamaldehyde (25 mg, 0.19 mmol), purification by column chromatography (eluent: 30% acetone in petroleum-ether) afforded 40 mg (91%) of **2k**, as an unseparable mixture of diastereoisomers in a ratio *anti:syn*=1.4:1. Physical data for **2k**: colorless oil, FT-IR (film): 3466, 3027, 1828, 1690, 1344, 1274, 1147, 1066, 973, 859, 754. ¹H NMR δ : 7.40-7.28 (m, 10H), 6.79 (dd, J_1 =16.0, J_2 =1.3, 1H, *anti*), 6.77 (d, J=16.0, 1H, *syn*), 6.24 (dd, J_1 =16.0, J_2 =7.5, 1H, *syn*), 6.15 (dd, J_1 =16.0, J_2 =5.5, 1H, *anti*), 5.18-5.15 (m, 2H, *anti*, *syn*), 4.98 (dd, J_1 =3.8, J_2 =2.3, 1H, *syn*), 4.95 (dd, J_1 =4.0, J_2 =2.0, 1H, *anti*), 4.66-4.64 (m, 1H, *anti*), 4.55 (dd, J_1 =3.8, J_2 =1.8, 1H, *syn*), 4.50 (ddd, J_1 =7.5, J_2 =3.8, J_3 =1.3, 1H, *syn*), 4.48 (dd, J_1 =4.0, J_2 =2.0, 1H, *anti*), 2.63 (bs, 1H), 2.45 (bs, 1H). ¹³C NMR δ : **2***k***-anti**: 152.1 (C), 149.1 (C), 135.5 (CH), 128.7 (CH), 128.5 (C), 126.7 (CH), 123.2 (CH), 89.3 (CH₂), 81.5 (CH), 72.7 (CH); **2***k***-syn**: 152.0 (C), 150.0 (C), 128.7 (CH), 128.6 (C), 128.5 (CH), 128.6 (CH), 124.6 (CH), 134.5 (CH), 134.5 (CH), 123.9 (CH), 88.7 (CH₂), 81.3 (CH), 73.6 (CH). HRMS (ESI): calcd. for [C₁₃H₁₂O₄ + NH₄⁺]: 250.1079, found for [M+NH₄]⁺: 250.1070.

4-(2-(Benzyloxy)-1-hydroxyethyl)-5-methylene-1,3-dioxolan-2-one 21

According to the general procedure for the indium-mediated allylation, starting from benzyloxyacetaldehyde (10 mg, 67 μ mol), purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 12.2 mg (76%) of **2**I, as an unseparable mixture of *syn* and *anti* diastereoisomers in a ratio *anti*:*syn*=3:1, as determined by HPLC analysis. Physical data for **2**I: pale-yellow oil, FT-IR (film): 3457, 3064, 3030, 2922, 2870, 1832, 1690, 1454, 1328, 1272, 1147, 1061, 858, 747, 700. ¹H NMR δ : 7.46-7.32 (m, 5H), 5.22 (dd, *J*₁=2.6, *J*₂=4.8, 1H, *syn*), 5.17 (ddd, *J*₁=1.7, *J*₂=3.9, *J*₃ =5.6, 1H, *anti*), 4.94-4.92 (m, 2H, *anti*, *syn*), 4.57-4.50 (m, 3H), 4.43 (dd, *J*₁=1.7 Hz, *J*₂=3.9 Hz, 1H, *anti*), 3.99-3-97 (m, 2H, *anti*, *syn*), 3.68-3.62 (m, 2H), 2.67 (bs, 1H, *anti*), 2.47 (bs, 1H, *syn*). ¹³C NMR δ : 152.0 (C), 150.7 (C), 150.0 (C), 137.0 (C), 128.6 (CH), 128.2 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 128.0 (CH), 89.4 (CH₂, *anti*), 87.7 (CH₂, *syn*), 79.0 (CH, *syn*), 78.6 (CH, *anti*), 73.7 (CH₂), 71.2 (CH, *syn*), 70.4 (CH, *anti*), 69.2 (CH₂, *syn*), 68.8 (CH₂, *anti*). HRMS (ESI): calcd. for [C₁₃H₁₄O₅ + Na⁺]: 273.0739, found for [M+Na]⁺: 273.0738.

(2R,3R,4R,5S)-5-hydroxy-5-((S)-5-methylene-2-oxo-1,3-dioxolan-4-yl)pentane-1,2,3,4-tetrayl

tetraacetate 2m

According to the general procedure for the indium-mediated allylation, starting from peracetyl arabinose (63.7 mg; 0.2 mmol); purification by dry-flash chromatography afforded 50 mg (60%) of the title compound **2m**. Colorless crystals, mp 102-5 °C (from petroleum ether/ethyl acetate). α_D +11 (c 0.2, CHCl₃). FT-IR (KBr): 3469, 2975, 1834, 1745, 1690, 1372, 1216, 1148, 1055. ¹H NMR δ : 5.42 (dd, J_1 =1.2, J_2 =10, 1H), 5.26 (dd, J_1 =1.2, J_2 =10, 1H), 5.08 (t, J=2.8, 1H), 5.00-5.04 (m, 1H), 4.90-4.98 (m, 2H), 4.26 (d, J=2.8, 2H), 4.02 (m, 1H), 3.68-3.79 (m, 1H), 2.23 (s, 3H), 2.14 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H). ¹³C NMR δ : 172.3 (C), 170.5 (C), 170.2 (C), 169.8 (C), 152.1 (C), 148.6 (C), 90.1 (CH₂), 78.8 (CH), 68.7 (CH), 68.6 (CH), 67.9 (CH), 67.3 (CH), 61.4 (CH₂), 20.7 (CH₃), 20.7 (CH₃), 20.6 (CH₃), 20.5 (CH₃). Anal. calcd. for C₁₇H₂₂O₁₂: C 48.81, H 5.30; found: C 48.58, H 5.27.

(*S*)-Tert-butyl 4-((*R*)-hydroxy((*R*)-5-methylene-2-oxo-1,3-dioxolan-4-yl)methyl)-2,2dimethyloxazolidine-3-carboxylate 2n (*SRR*), and (*S*)-Tert-butyl 4-((*S*)-hydroxy((*S*)-5-methylene-2-oxo-1,3-dioxolan-4-yl)methyl)-2,2-dimethyloxazolidine-3-carboxylate 2n (*SSS*)

According to the general procedure for the indium-mediated allylation, starting from 42 mg (0.18 mmol) of the Garner aldehyde ((*4S*)-tert-butyl-4-formyl-2,2-dimethyloxazolidine-3-carboxylate); purification by dry-flash chromatography (SiO₂, eluent: 30% acetone in petroleum-ether) afforded 49 mg (81%) of the title product as an equimolar mixture of diastereoisomers **2n** (*SRR*) and **2n** (*SSS*). Crystallization from 20% acetone in hexanes afforded white crystals which were also a 1:1 diastereoisomeric mixture. The isomers could be separated by rapid flash chromatography (SiO₂, gradient elution: chloroform/MeOH from 99/1 to 97/3), where **2n** (*SRR*) is a less polar and **2n** (*SSS*) is the more polar isomer. Both isomers were submitted to X-ray crystallographic analysis, the results of which are graphically represented on pages S61 and S63.

Physical data for **2n** (*SRR*): White, rhombohedral crystals, mp 180-182 °C. FT-IR (KBr): 2924, 2853, 1827, 1689, 1653, 1392, 1372, 1147, 1058, 863, 767. ¹H NMR (d_6 -DMSO, 340 K) δ : 5.61 (d, *J*=4.5, 1H), 5.32 (ddd, J_1 =2.4, J_2 =2.2, J_3 =1.5, 1H), 4.90 (dd, J_1 =3.5, J_2 =2.2, 1H), 4.70 (dd, J_1 =3.5, J_2 =2.4, 1H), 4.06 (br. t, *J*=6.5, 1H), 4.03 (dd, J_1 =9.5, J_2 =1.5, 1H), 3.96-3.91 (m, 2H), 1.54 (s, 3H), 1.42 (s, 3H), 1.41 (s, 9 H). ¹³C NMR (d_6 -DMSO, 340 K) δ : 151.8 (C), 150.1 (C), 93.8 (C), 89.0 (CH₂), 79.8 (CH), 70.3 (CH), 63.5 (CH₂), 57.9 (CH), 28.0 (CH₃), 26.3 (CH₃), 23.4 (CH₃). HRMS (ESI): calcd. for [C₁₅H₂₃NO₇ + Na⁺]: 352.1372, found for [M+Na]⁺: 352.1351. [α]_D²⁰ -37 (c 1.0, CHCl₃). Physical data for **2n** (*SSS*): White, rod-like crystals, mp 114-116 °C. FT-IR (KBr): 3467, 2980, 2936, 1835, 1690, 1392, 1373, 1149, 1059, 862, 768. ¹H NMR (d_6 -DMSO, 343 K) δ : 5.95 (s, 1H), 5.21 (ddd, J_1 =5.5, J_2 =3.5, J_3 =2.0, 1H), 4.95-4.89 (m, 2H), 4.09 (dd, J_1 =8.9, J_2 =1.4, 1H), 3.95 (ddd, J_1 =6.5, J_2 =1.4, J_3 =1.0, 1H), 3.87 (dd, J_1 =8.9, J_2 =6.5, 1H), 3.76 (bs, 1H), 1.50 (s, 3H), 1.46 (s, 3H), 1.44 (s, 9H). ¹³C NMR (d_6 -DMSO, 343 K) δ : 152.0 (C), 151.5 (C), 150.0 (C), 93.2 (C), 88.7 (CH₂), 80.1 (C), 79.8 (CH), 70.6 (CH), 62.9 (CH₂), 56.6 (CH), 27.7 (CH₃), 26.8 (CH₃), 23.8 (CH₃).HRMS (ESI): calcd. for [C₁₅H₂₃NO₇ + Na⁺]: 352.1372, found for [M+Na]⁺: 352.1357. Anal. calcd. for C₁₅H₂₃NO₇: C 54.71, H 6.99, N 4.25; found: C 54.39, H 6.73, N 4.04.

4-(1-Hydroxycyclohexyl)-5-methylene-1,3-dioxolan-2-one 2o

According to the general procedure for the indium-mediated allylation, starting from cyclohexanone (19.6 mg; 0.2 mmol); purification by dry-flash chromatography afforded 21 mg (52%) of the **20**. Colorless crystals, mp 107-9 °C (from hexanes/ethyl acetate). FT-IR (KBr): 3483, 2985, 2936, 2863, 1798, 1686, 1345, 1159, 1049. ¹H NMR $\overline{0}$: 5.00 (dd, J_1 =1.8, J_2 =4.0, 1H), 4.84 (t, J=1.8, 1H), 4.53 (dd, J_1 =1.6, J_2 =4.0, 1H), 1.42-1.72 (m, 10H), 1.21-1.28 (m, 1H). ¹³C NMR $\overline{0}$: 149.9 (C), 90.0 (C), 84.8 (CH₂), 72.4 (CH), 32.1 (CH₂), 31.3 (CH₂), 25.2 (CH₂), 20.8 (CH₂). Anal. calcd. for C₁₀H₁₄O₄: C 60.59, H 7.12; found: C 60.50, H 7.11.

anti-Methyl 2-hydroxy-2-(5-methylene-2-oxo-1,3-dioxolan-4-yl)propanoate 2p and *trans*-methyl 5-acetyl-4-methyl-2-oxo-1,3-dioxolane-4-carboxylate 2g

According to the general procedure for the indium-mediated allylation, starting from methyl pyruvate (18.2 mg; 0.18 mmol); purification by dry flash chromatography (gradient elution: from 20% to 30% acetone in petroleum-ether) afforded 19 mg (52%) of **2p**, followed by 3 mg (8%) of **2q**. Physical data for **2p**: Colorless crystals, mp 93-5 °C (from hexanes/ethyl acetate). FT-IR (KBr): 3481,

Physical data for **2p**: Coloness crystals, mp 93-5° C (from nexanes/ethyl acetate). F1-IR (RBf): 3481, 2959, 1832, 1740, 1689, 1336, 1267 1141, 1059. ¹H NMR δ : 5.17 (m, 1H), 5.00 (dd, J_7 =3.4, J_2 =4.0, 1H), 4.58 (dd, J_7 =1.8, J_2 =4.0, 1H), 3.87 (s, 3H), 3.64 (s, 1H), 1.53 (s, 3H). ¹³C NMR δ : 173.5 (C), 151.6 (C), 148.9 (C), 90.2 (CH₂), 81.4 (CH), 75.1 (C), 53.8 (CH₃), 21.3 (CH₃). HRMS (ESI): calcd. for [C₈H₁₀O₆ + Na⁺]: 225.0369; found for [M+Na]⁺: 225.0368. Physical data for **2q**: Colorless oil. FT-IR (film): 2962, 1827, 1741, 1692, 1445, 1273, 1225, 1113, 1078. ¹H NMR δ : 5.10 (s, 1H), 3.91 (s, 3H), 2.36 (s, 1H), 1.58 (s, 3H). ¹³C NMR δ : 201.6 (C), 168.9 (C), 151.9 (C), 148.9 (C), 85.6 (C), 82.5 (CH), 54 (CH₃), 28.0 (CH₃), 18.5 (CH₃). HRMS (ESI) calcd. for C₈H₁₁O₆ [M+H]⁺: 302.0550; found: 203.0549.

General procedure for the deprotection of enol carbonates 2 into α , β -dihydroxy ketones 3

Mercury(II) nitrate (118 mg; 0.364 mmol) was added to a cold (0 °C) solution of compound **2** (0.121 mmol) in dioxane (2 mL) and water (0.6 mL). The reaction mixture was stirred for 5 min, when TLC (eluent: 50% EtOAc in petroleum-ether) indicated the disappearance of the starting material. Saturated aqueous solution of KI (10 mL) was added at 0 °C, the mixture was allowed to reach rt, and was stirred at rt for an additional 5 min. Standard work-up with diethyl ether, followed by purification by dry-flash chromatography, afforded the pure compound **3**.

anti-3,4-Dihydroxy-4-phenylbutan-2-one 3a12

According to the general procedure for the deprotection of enol carbonates, starting from **2a** (25 mg, 0.12 mmol); after purification by column chromatography (eluent: 50% EtOAc in hexanes), 14.6 mg (67%) of the title compound **3a** was obtained, as a mixture of isomers in a ratio *anti:syn*=12:1 (the ratio of isomers did not change after crystallization from 5% EtOAc in hexanes). Physical data for **3a**: White crystals, m.p. 106-7 °C. FT-IR (KBr): 3417, 3032, 2916, 1712, 1357, 1231, 1101, 1055, 759, 704. ¹HNMR δ : 7.42-7.31 (m, 5H), 5.02-4.98 (m, 1H), 4.46 (bt, $J_1 = 4.4$, 1H), 3.74 (d, J = 4.4, 1H), 3.12 (d, J = 4.4, 1H), 1.95 (s, 3H). ¹³C NMR δ : 208.2 (C), 138.9 (C), 128.6 (CH), 128.2 (CH), 126.2 (CH), 81.1 (CH), 74.9 (CH), 27.6 (CH₃). HRMS (ESI): calcd. for [C₁₀H₁₂O₃ + NH₄⁺]: 198.1130, found for [M+NH₄]⁺: 198.1124.

anti-3,4-Dihydroxy-4-(4-methoxyphenyl)butan-2-one 3c¹³

According to the general procedure for the deprotection of enol carbonates, starting from **2c** (43.5 mg, 0.18 mmol); after purification by column chromatography (eluent: 50% EtOAc in petroleum-ether), 25 mg (64%) of the title compound **3c** was obtained, as a mixture of diastereoisomers in a ratio: *anti:syn*=10:1. Physical data for **3c**: white crystals, mp 50-3 °C (recrystallized from 5% EtOAc in hexanes), FT-IR (KBr): 3429, 3004, 2913, 1712, 1514, 1357, 1249, 1178, 1031, 836. ¹H NMR $\overline{0}$: 7.32 (d, *J*=8.8, 2H), 6.90 (d, *J*=8.8, 2H), 4.93 (d, *J*=4.8, 1H), 4.43 (d, *J*=4.8, 1H), 3.81 (s, 3H), 3.67 (bd, *J*=4.8, 1H), 3.05 (bs, 1H), 2.00 (s, 3H). ¹³C NMR $\overline{0}$: 208.4 (C), 159.4 (C), 131.0 (C), 127.5 (CH), 113.9 (CH), 80.9 (CH), 74.5 (CH), 55.2 (CH₃), 27.6 (CH₃). HRMS (ESI): calcd. for [C₁₁H₁₄O₄ + NH₄⁺]: 228.1236, found for [M+NH₄]⁺: 228.1225.

anti-4-(Benzo[d][1,3]dioxol-5-yl)-3,4-dihydroxybutan-2-one 3d

According to the general procedure for the deprotection of enol carbonates, starting from **2d** (72 mg, 0.29 mmol); after purification by column chromatography (eluent: 50% EtOAc in petroleum-ether), 31.6 mg (49%) of the title compound **3d** was obtained, as a mixture of diastereoisomers in a ratio: *anti:syn*=6.4:1. Physical data for **3d**: white crystals, mp 112-5 °C, FT-IR (KBr): 3426, 2902, 1713, 1490, 1444, 1358, 1247, 1037, 930. ¹H NMR δ : 6.92-6.77 (m, 3H), 5.97 (s, 2H), 4.88 (bt, *J*=3.9, 1H), 4.40 (t, *J*=4.9, 1H), 3.59 (d, *J*=4.9, 1H), 2.93 (d, *J*=3.9, 1H), 2.06 (s, 3H). ¹³C NMR δ : 208.3 (C), 147.9 (C), 147.5 (C), 133.0 (C), 119.8 (CH), 108.2 (CH), 106.8 (CH), 101.2 (CH₂), 80.8 (CH), 74.7 (CH), 27.6 (CH₃). HRMS (ESI): calcd. for [C₁₁H₁₂O₅ + Na⁺]: 247.0582, found for [M+Na]⁺: 247.0573.

anti-3,4-Dihydroxy-4-(4-chlorophenyl)butan-2-one 3e¹⁴

According to the general procedure for the deprotection of enol carbonates, starting from **2e** (30 mg, 0.13 mmol); after purification by column chromatography (eluent: 50% EtOAc in petroleumether), 20.1 mg (75%) of the title compound **3e** was obtained, as unseparable mixture of diastereoisomers in a ratio: *anti:syn*=7.7:1. Physical data for **3e**: white crystals, mp 52-4 °C, FT-IR (KBr): 3416, 3032, 2919, 1712, 1358, 1231, 1102, 1056, 759, 705. ¹H NMR $\overline{0}$: 7.39-7.29 (m, 4H), 4.96 (bs, 1H), 4.42 (bt, *J*=4.8, 1H), 3.75 (d, *J*=4.8, 1H), 3.19 (bs, 1H), 1.98 (s, 3H). ¹³C NMR $\overline{0}$: 207.9 (C), 137.6 (C), 134.0 (C), 128.7 (CH), 127.6 (CH), 80.8 (CH), 74.3 (CH), 27.7 (CH₃). HRMS (ESI): calcd. for [C₁₀H₁₁O₃Cl + Na⁺]: 237.0294, found for [M+Na]⁺: 237.0290. Anal. calcd. for C₁₀H₁₁O₃Cl: C 55.94, H 5.13; found: C 55.98, H 5.08.

anti-3,4-Dihydroxydecan-2-one 3i

According to the general procedure for the deprotection of enol carbonates, starting from **2i** (18 mg, 0.08 mmol); after purification by column chromatography (eluent: 50% EtOAc in petroleum-ether), 10 mg (67%) of the title compound **3i** was obtained. Physical data for **3i**: white crystals, mp 50-2 °C (from 5% EtOAc in hexanes), FT-IR (KBr): 3303, 3210, 2926, 2852, 1719, 1361, 1080, 1053. ¹H NMR δ : 4.28 (t, *J*=5.2, 1H), 3.88 (bs, 1H), 3.51 (d, *J*=5.2, 1H), 2.26 (s, 3H), 2.08 (d, *J*=7.5, 1H), 1.53-1.49 (m, 2H), 1.28-1.27 (m, 8H), 0.88 (t, *J*=7.0, 3H). ¹³C NMR δ : 208.0 (C), 80.5 (CH), 72.7 (CH), 31.8(CH₂),

31.7 (CH₂), 29.1 (CH₂), 26.9 (CH₃), 25.6 (CH₂), 22.6 (CH₂), 14.0 (CH₃). HRMS (ESI): calcd. for $[C_{10}H_{20}O_3 + Na^+]$: 211.1310, found for $[M+Na]^+$: 211.1307.

General procedure for the rearrangement of enol carbonates 2 into cis cyclic carbonates 4

Diisopropylethylamine (6 mg; $8.0 \ \mu$ L; 46 μ mol) was added to a solution of compound **2** (0.083 mmol) in chloroform (1.5 mL). Reaction mixture was stirred at rt, and the progress of the reaction was monitored by TLC (eluent: 40% EtOAc in petroleum-ether; the reactions are usually complete in 1-3 h). The reaction mixture was concentrated at rotavap and the crude product purified by dry-flash chromatography.

cis-4-Acetyl-5-phenyl-1,3-dioxolan-2-one 4a

According to the general procedure for the rearrangement of enol carbonates **2** into *cis* cyclic carbonates **4**, starting from **2a** (20 mg; 97 µmol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 14.1 mg (71%) of the title compound **4a**. Physical data for **4a**: white crystals, mp 106-7 °C, FT-IR (KBr): 3429, 3047, 2980, 1809, 1721, 1339, 1173, 1074, 768. ¹H NMR δ : 7.42-7.40 (m, 3H); 7.26-7.25 (m, 2H); 5.92 (d, *J*=8.8, 1H); 5.23 (d, *J*=8.8, 1H); 1.77 (s, 3H). ¹³C NMR δ : 153.7 (C), 148.5 (C), 131.9 (C), 130.0 (CH), 129.1 (CH), 126.1 (CH), 82.5 (CH), 79.4 (CH), 27.6 (CH₃). HRMS (ESI): calcd. for [C₁₁H₁₀O₄ + Na⁺]: 229.0477, found for [M+Na]⁺: 229.0477.

cis-4-Acetyl-5-(4-methoxyphenyl)-1,3-dioxolan-2-one 4c

According to the general procedure for the rearrangement of enol carbonates **2** into *cis* cyclic carbonates **4**, starting from **2c** (25 mg; 0.106 mmol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 14 mg (56%) of the title compound **4c**. Physical data for **4c**: white crystals, mp 130-132 °C. IR (KBr): 2974, 2841, 1790, 1726, 1617, 1519, 1340, 1260, 1175, 1173, 835, 767. ¹H NMR $\overline{0}$: 7.18 (d, *J*=9.0, 2H); 6.91 (d, *J*=9.0, 2H); 5.88 (d, *J*=8.7, 1H); 5.21 (d, *J*=8.7, 1H); 3.81 (s, 3H), 1.80 (s, 3H). ¹³C NMR $\overline{0}$: 201.9 (C), 160.7 (C), 153.7 (C), 127.6 (CH), 123.7 (C), 114.5 (CH), 82.6 (CH), 79.4 (CH), 55.3 (CH₃), 27.7 (CH₃). HRMS (ESI): calcd. for [C₁₂H₁₂O₅ + Na⁺]: 259.0582, found for [M+Na]⁺: 259.0571. Anal. calcd. for C₁₂H₁₂O₅: C 61.02, H 5.08; found: C 60.50, H 5.08.

cis-4-Acetyl-5-(benzo[d][1,3]dioxol-5-yl)-1,3-dioxolan-2-one 4d

According to the general procedure for the rearrangement of enol carbonates **2** into *cis* cyclic carbonates **4**, starting from **2d** (43 mg; 0.172 mmol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 22.7 mg (53%) of the title compound **4d**. Physical data for **4d**: white crystals, mp 136-8 °C (5% EtOAc in hexanes), FT-IR (KBr): 3437, 2908, 1794, 1725, 1502, 1261, 1180, 1075, 812, 767. ¹H NMR δ : 6.82 (d, *J*=8.0, 1H); 6.74 (dd, *J*₁=8.0, *J*₂=2.0, 1H); 6.70 (d, *J*=2.0, 1H); 6.00 (s, 2H); 5.82 (d, *J*=8.8, 1H); 5.19 (d, *J*=8.8, 1H); 1.88 (s, 3H). ¹³C NMR δ : 201.7 (C), 153.5 (C), 149.0 (C), 148.4 (C), 125.4 (C), 120.2 (CH), 108.7 (CH), 106.4 (CH), 101.7 (CH₂), 82.4 (CH), 79.4 (CH), 27.8 (CH₃). HRMS (ESI): calcd. for [C₁₂H₁₀O₆ + NH₄⁺]: 268.0821, found for [M+NH₄]⁺: 268.0817; Anal. calcd. for C₁₂H₁₀O₆: C 57.60, H 4.00; found: C 57.28, H 4.25.

cis-4-Acetyl-5-(4-chlorophenyl)-1,3-dioxolan-2-one 4e

According to the general procedure for the rearrangement of enol carbonates **2** into *cis* cyclic carbonates **4**, starting from **2e** (20 mg; 0.08 mmol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 12.6 mg (63%) of the title compound **4e**. Physical data for **4e**: white crystals, mp 102-3 °C, FT-IR (KBr): 3438, 3004, 2922, 1793, 1341, 1179, 1075, 814. ¹H NMR $\overline{0}$: 7.40 (d, *J*=8.8, 2H); 7.20 (d, *J*=8.8, 2H); 5.89 (d, *J*=9.0, 1H); 5.21 (d, *J*=9.0, 1H); 1.85 (s, 3H). ¹³C NMR $\overline{0}$: 201.8 (C), 153.3 (C), 136.2 (C), 130.5 (C), 129.4 (CH), 127.4 (CH), 82.3 (CH), 78.7 (CH), 27.8 (CH₃). HRMS (ESI): calcd. for [C₁₁H₉O₄Cl + NH₄⁺]: 258.0533, found for [M+NH₄]⁺: 258.0532. Anal. calcd. for C₁₁H₉O₄Cl: C 54.88, H 3.74; found: C 54.60, H 3.90.

cis-4-Acetyl-5-hexyl-1,3-dioxolan-2-one 4i

According to the general procedure for the rearrangement of enol carbonates **2** into *cis* cyclic carbonates **4**, starting from **2i** (17 mg, 0.08 mmol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 10 mg (59%) of the title compound **4i**, as a colorless oil. Physical data for **4i**: FT-IR (KBr): 2956, 2930, 2859, 1812, 1727, 1463, 1363, 1166, 1080. ¹H NMR $\bar{\delta}$: 4.61 (q, *J*=6.2, 1H), 4.47 (d, *J*=6.2, 1H), 2.36 (s, 3H), 1.84-1.79 (m, 2H), 1.56-1.29 (m, 8H), 0.89 (t, *J*=6.8, 3H). ¹³C NMR $\bar{\delta}$: 204.0 (C), 153.3 (C), 83.0 (CH), 79.1 (CH), 34.6 (CH₂), 31.4 (CH₂), 28.6 (CH₂), 26.5 (CH₃), 24.1 (CH₂), 22.4 (CH₂), 13.9 (CH₃). HRMS (ESI) calcd. for [C₁₁H₁₈O₄ + Na⁺]: 237.1103; found for [M+Na]⁺: 237.1090.

4-Acetyl-5-((*E*)-prop-1-en-1-yl)-1,3-dioxolan-2-one – mixture of *cis* isomer 4j and *trans* isomer 5j

According to the general procedure for the rearrangement of enol carbonates **2** into *cis* cyclic carbonates **5**, starting from **2j** (20 mg; 0.28 mmol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 10 mg (50%) of **5j** (*trans*), followed by 8 mg (40%) of **4j** (*cis*). Physical data for **5j**: colorless oil, FT-IR (film): 2922, 1804, 1726, 1356, 1174, 1078. ¹H NMR δ : 6.06-5.98 (m, 1H), 5.58 (ddq, J_1 =15.0, J_2 =6.9, J_3 =1.8, 1H), 5.01 (bt, J=6.9, 1H), 4.57 (d, J=6.9, 1H), 2.36 (s, 3H), 1.80 (ddd, J_1 =7.0, J_2 =1.8, J_3 =0.5, 3H). ¹³C NMR δ : 202.7 (C), 153.0 (C), 135.0 (CH), 124.9 (CH), 83.0 (CH), 79.3 (CH), 26.7 (CH₃), 17.8 (CH₃). HRMS (ESI): calcd. for [C₈H₁₀O₄ + NH₄]: 188.0923, found for [M+NH₄]⁺: 188.0919. Physical data for **4j**: colorless oil, FT-IR (film): 2928, 1799, 1723, 1337, 1174, 1076. ¹H NMR δ : 6.06-5.99 (m, 1H), 5.34-5.26 (m, 2H), 4.98 (d, J=8.5, 1H), 2.25 (s, 3H), 1.78-

1.77 (m, 3H). ¹³C NMR δ : 202.4 (C), 153.4 (C), 135.8 (CH), 121.2 (CH), 81.4 (CH), 78.9 (CH), 28.2 (CH₃), 17.8 (CH₃). HRMS (ESI): calcd. for [C₈H₁₀O₄+ NH₄⁺]: 188.0923, found for [M+NH₄⁺]⁺: 188.0919.

(E)-4-Acetyl-5-styryl-1,3-dioxolan-2-one - cis isomer 4k and trans isomer 5k

According to the general procedure for the rearrangement of enol carbonates **2** into *cis* cyclic carbonates **4**, starting from **2k** (36 mg; 0.129 mmol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 16.3 mg (45%) of **5k**, followed by 12.2 mg (34%) of **4k**. Physical data for **4k**: white crystals, mp 92-4 °C (from 5% EtOAc in hexanes), FT-IR (KBr): 3060, 3029, 1808, 1730, 1336, 1171, 1082, 1024, 978, 757, 695. ¹H NMR δ: 7.39-7.32 (m, 5H), 6.83 (dd, J_1 =15.7, J_2 =1.1, 1H), 5.96 (dd, J_1 =15.7, J_2 =7.3, 1H), 5.57-5.48 (m,1H), 5.10 (d, J=9.0, 1H), 2.27 (s, 3H). ¹³C NMR δ: 202.5 (C), 153.3 (C), 137.0 (CH), 134.5 (C), 129.3 (CH), 128.8 (CH), 127.1 (CH), 118.3 (CH), 81.4 (CH), 78.6 (CH), 28.3 (CH₃). HRMS (ESI): calcd. for [C₁₃H₁₂O₄ + K⁺]: 271.0373, found for [M+K]⁺: 271.0367. Physical data for **5k**: white crystals, mp 115-6 °C (from 5% EtOAc in hexanes), FT-IR (KBr): 3028, 2923, 1810, 1729, 1358, 1170, 1090, 972, 758, 695. ¹H NMR δ: 7.45-7.33 (m, 5H), 6.83 (d, *J*=15.7, 1H), 6.20 (dd, *J*₁=15.7, *J*₂=7.4, 1H), 5.26 (t, *J*=6.2, 1H), 4.68 (d, *J*=6.2, 1H), 2.41 (s, 3H). ¹³C NMR δ: 202.8 (C), 153.0 (C), 136.7 (CH), 134.6 (C), 129.3 (CH), 128.9 (CH), 127.1 (CH), 121.9 (CH), 83.0 (CH), 79.2 (CH), 26.8 (CH₃). HRMS (ESI): calcd. for [C₁₃H₁₂O₄ + K⁺]: 271.0373, found for [M+K]⁺: 271.0365. Anal. calcd. for C₁₃H₁₂O₄: C 67.24, H 5.17; found: C 66.93, H 5.32.

(1S,2R,3R)-1-((4S,5S)-5-acetyl-2-oxo-1,3-dioxolan-4-yl)butane-1,2,3,4-tetrayl tetraacetate 4m

According to the general procedure for the rearrangement of enol carbonates **2** into *cis* cyclic carbonates **4**, starting from **2m** (10 mg; 24 μ mol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 7.5 mg (75%) of the title compound **4m**. Physical data for **4m**: yellow oil, FT-IR (film): 3358, 2924, 2853, 2363, 1821, 1746, 1371, 1209, 1134, 1161, 736, 602. ¹H NMR δ : 5.50-5.46 (m, 2H), 5.13-5.10 (m, 1H), 4.93 (d, *J*=4.6, 1H), 4.78 (t, *J*=4.6, 1H), 4.27 (dd, *J*₁=13.0, *J*₂=3.0, 1H), 4.08 (dd, *J*₁=13.0, *J*₂=4.8, 1H), 2.37 (s, 3H), 2.14 (s, 3H), 2.10 (s, 3H), 2.08 (s, 3H), 2.08 (s, 3H). ¹³C NMR δ : 203.2 (C), 170.5 (C), 169.8 (C), 169.7 (C), 169.2 (C), 152.1 (C), 79.5 (CH), 76.4 (CH), 69.2 (CH), 68.2 (CH), 67.8 (CH), 61.3 (CH₂), 26.7 (CH₃), 20.8 (CH₃), 20.7 (CH₃), 20.6 (CH₃), 20.4 (CH₃). HRMS (ESI): calcd. for [C₁₇H₂₂O₁₂ + NH₄⁺]: 436.1455, found for [M+NH₄]⁺: 436.1449.

General procedure for the rearrangement of enol carbonates 2 into trans cyclic carbonates 5

Diisopropylethylamine (103 mg; 140 μ L; 0.8 mmol) was added to a solution of compound **2** (0.16 mmol) in chloroform (1.5 mL). Reaction mixture was stirred at rt, and the progress of the reaction was monitored by TLC (eluent: 40% EtOAc in petroleum-ether; the reactions are usually complete in 45

min). The reaction mixture was concentrated at rotavap and the crude product purified by dry-flash chromatography.

trans-4-Acetyl-5-(benzo[*d*][1,3]dioxol-5-yl)-1,3-dioxolan-2-one 5d and 4-(benzo[*d*][1,3]dioxol-5-yl)-4-hydroxybut-3-en-2-one 6d

According to the general procedure for the rearrangement of enol carbonates **2** into *trans* cyclic carbonates **5**, starting from **2d** (40 mg; 0.16 mmol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 20 mg (50%) of the title compound **5d**. When the reaction time was extended to several hours, in addition to **5d**, compound **6d** (a less polar spot on TLC) could also be isolated in 20% yield. This compound is described in the literature,¹⁵ and the copies of its' ¹H and ¹³C NMR spectra are on pages S112 and S113. Physical data for **5d**: white crystals, mp 102-5 °C, FT-IR (KBr): 3360, 2924, 1803, 1730, 1659, 1498, 1452, 1256, 1169, 1080, 1036, 767. ¹H NMR δ : 6.86-6.83 (m, 3H), 6.01 (s, 2H), 5.55 (d, *J*=6.3, 1H), 4.72 (d, *J*=6.3, 1H), 2.40 (s, 3H). ¹³C NMR δ : 202.8 (C), 148.9 (CH), 148.7 (C), 129.2 (C), 120.0 (CH), 108.8 (CH), 105.9 (CH), 101.7 (CH₂), 84.8 (CH), 79.4(CH), 26.9 (CH₃); one carbon resonance, corresponding to the quaternary carbon atom from carbonate, was not observed under the recording conditions. HRMS (ESI): calcd. for [C₁₂H₁₀O₆ + NH₄⁺]: 268.0821, found for [M+NH₄]⁺: 268.0810. Anal. calcd. for C₁₂H₁₀O₆: C 57.60, H 4.00; found: C 57.91, H 3.88.

trans-4-Acetyl-5-(4-chlorophenyl)-1,3-dioxolan-2-one 5e

According to the general procedure for the rearrangement of enol carbonates **2** into *trans* cyclic carbonates **5**, starting from **2e** (20 mg; 80 μ mol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 12 mg (60%) of the title compound **5e**. Physical data for **5e**: white crystals, mp 92-3 °C (from 5% EtOAc in hexanes), FT-IR (KBr): 3424, 2920, 1815, 1718, 1164, 1095, 761. ¹H NMR $\overline{0}$: 7.43 (d, *J*=8.3, 2H), 7.34 (d, *J*=8.3, 2H), 5.66 (d, *J*=6.5, 1H), 4.69 (d, *J*=6.5, 1H), 2.43 (s, 3H). ¹³C NMR $\overline{0}$: 202.8 (C), 152.7 (C), 135.8 (C), 134.2 (C), 129.6 (CH), 126.9 (CH), 84.6 (CH), 78.5 (CH), 26.9 (CH₃). HRMS (ESI): calcd. for [C₁₁H₉O₄Cl + Na⁺]: 263.0087, found for [M+Na]⁺: 263.0085. Anal. calcd. for C₁₁H₉O₄Cl: C 54.88, H 3.74; found: C 54.47, H 3.58.

¹ For description of the technique of dry-flash chromatography, see: a) Harwood, L. M. *Aldrichimica Acta* **1985**, *18*, 25; b) *Vogel's Textbook of Practical Organic Chemistry*, Longman Scientific&Technical, 5th edition,

London, 1989, p. 220; c) An account which includes some improvements of the separation technique: Pedersen, D. S.; Rosenbohm, C. *Synthesis* **2001**, 2431.

 ² Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*, 3rd edition, Pergamon Press, **1988**.
³ Synthesis of 1-Tosyl-1*H*-indole-3-carbaldehyde: Guo, X.; Hu, W.; Cheng, S.; Wang, L.; Chang, J. Synth. Commun. **2006**, *36*, 781.

⁴ Wolfrom, M. L.; Weisblat, D. I.; Zophy, W. H.; Waisbrot, S. W. J. Am. Chem. Soc. 1941, 63, 201.

⁵ Ibers, J. A.; Hamilton, W. C. *International Tables for X-ray Crystallography*, Kynoch Press, Birmingham, 1974.

⁶ SIR-92: Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Cryst. 1993, 26, 343.

⁷ Mercury: visualization and analysis of crystal structures, Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; Van de Streek, J. *J. Appl. Cryst.* **2006**, *39*, 453.

¹² a) Markert, M.; Mulzer, M.; Schetter, B., Mahrwald, R. J. Am. Chem. Soc. **2007**, *129*, 7258; b) Rogozinska, M.; Mlynarski, J. *Tetrahedron Lett.* **2009**, *50*, 1639.

¹³ In the literature, this compound has not been characterized as a pure *anti* isomer, but as a mixture of

diastereoisomers; therefore its' spectral data are provided here. See: Aelvoet, K.; Batsanov, A. S.; Blatch, A. J.; Grosjean, C.; Patrick, L. G. F.; Smethurst, C. A.; Whiting, A. Angew. Chem. Int. Ed. **2008**, 47, 768.

¹⁴ Schetter, B.; Stosiek, C.; Ziemer, B.; Mahrwald, R. Appl. Organometal. Chem. 2007, 21, 139.

¹⁵ a) M. Julia, M.; Jassonneix, C. B. *Bull. Soc. Chim. Fr.* **1975**, 751; b) Mors, W.; Gottliee, O. R.; Djerassi, C. J. *Am. Chem. Soc.* **1957**, 79, 4507.

⁸ Sheldrick, M. SHELXL-97, Program for crystal structure refinement, University of Goettingen, Germany, 1997.

⁹ Alexander, J. U. S. Patent 5 466 811, 1995; Chem. Abstr. **1995**, 124, 176148x.

¹⁰ Jung, M.; Blum, R.; Gaede, B.; Gisler, M. *Heterocycles*, **1989**, *28*, 93

¹¹ a) Sakamoto, F.; Ikeda, S.; Tsukamoto, G. *Chem. Pharm. Bull.* **1984**, *32*, 2241. b) For the explanation of the mechanism of the reaction sequence, see: Fischler, H.-M.; Heine, H.-G.; Hartmen, W. *Tetrahedron Lett.* **1972**, 1701.

Solvent: cdcl3 Ambient temperature GEMINI-200 "nmr"

GEMINI-200 "nmr" PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.391 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710883 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 1 minute

1H NMR

6.836 -6.827

6.844

6.819

6.5

6.0

5.5

5.0

4.5

3.5

3.0

2.5

4.0

2.132

							S18
13C NMR					9.72	NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 TD0	VZ-CO3 2 1 20100309 11.53 spect 5 mm BBO BB-1H 2gpg30 32768 CDC13 204 4 29761.904 Hz 0.908261 Hz 0.908261 Hz 0.550524 sec 812 16.800 usec 6.50 usec 298.0 K 2.00000000 sec 0.03000000 sec 1
						NUC1 P1 PL1 PL1W SF01	CHANNEL f1 ====== 13C 11.50 usec 3.00 dB 32.22848892 W 125.8043140 MHz
						CPDPRG2 NUC2 PCPD2 PL12 PL13 PL13 PL13W PL12W PL12W PL13W SFO2 SF SF WDW SSB LB GB PC	CHANNEL f2 waltz16 1H 80.00 usec 1.20 dB 18.40 dB 20.76952171 W 0.39575511 W 500.2618940 MHz 32768 125.7904923 MHz EM 0 1.50 Hz 0 1.40
150 140	130 120 11	0 100 90 8	0 70 60	50 40 30 2	20 10 ppm		

Ambient temperature/ GEMINI-200 "nmr"

PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 73.6 degrees Acq. time 1.067 sec Width 15000.0 Hz Arrayed repetitions OBSERVE C13, 50.2827800 MHz Power 0 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.5 Hz

Line broadening 1.5 Hz FT size 32768 Total time 22 minutes

13C NMR

127.962 17.553 77.637 7.000 7F 140.179 152.014 . . 180 200 160 140 120 100 80 60 20 40 ppm

S20

MB-68-D

Solvent: cdc18 Ambient temperature GEMINI-200 "nmr"

GEMINI-200 "Mar" PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.381 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710962 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 20 minutes

1H NMR

8

7

21.71

6

5

10-10

5.30

the state of the

4.71

0.37

1 march

5.25

S21

ppm

3

4.00

2

			NAME S22 MB-68 EXPNO S22 2 PROCNO 1 Date 20100322 Time 13.37 INSTRUM spect PROBHD 5 num BBO BB-1H PULPROG 249930 TD 32768 SOLVENT CDC13 NS 403
13C NMR			NS 403 DS 4 SWH 29761.904 Hz FIDRES 0.908261 Hz AQ 0.5505524 se RG 1820 DW 16 800 us DE 6.50 us TE 298.0 K D1 2.00000000 se D1 0.03000000 se TD0 1
			CHANNEL fl NUC1 13C P1 11.50 us PL1 3.00 dB PL1W 32.22848892 W SF01 125.8043140 MH CHANNEL f2 CHANNEL f2 Waltz16
			NUC2 IH PCPD2 80.00 is PL2 1.20 dB PL12 18.40 dB PL13 18.40 dB PL14 0.39575511 W PL13W 0.39575511 W PL13W 0.39575511 W SFOZ 500.2617699 MH SI 32766 SF 125.7904864 MH WDW EM SSB 0 LB 1.50 Hz GB 0 PC 1.40
	-		
150 140 130 120 110	100 90 80 70 60	50 40 30 20 10 ppr	n

	129.63 124.13 124.13 120.65	89, 34	55.37	NAME MB-66-F EXPNO S24 PROCNO S24 Date 2010032 Time 11.1 INSTRUM spec PROBHD 5 mm BBO BB-11 FULPROG 20903 TD 3276 SOLVENT CDC1 NS 40
13C NMR				SWH 29761.90 FIDRES 0.90826 AQ C.550552 RG 103 DW 16.80 DE 6.5 TE 298. DI 2.0000000 DI1 0.0300000 TD0 TD0
				NUC1 13 P1 11,5 PL1 3.0 EL1W 32,2284889 SF01 125,804314
				CHANNEL f2 == CPDPRG2 waltz1 NOC2 1 PCPD2 80.0 PL2 1.2 PL12 18.4 PL13 18.4 PL2W 20.7695217 PL12W 0.3957551 SF02 500.262098 SI 3276 SF 125.790484 WDW E SSB 1 LB 1.5 GB 1.4
				OMe OH
150 140	130 120 110 1	00 90 80 7		2b-anti

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

GEMINI-200 "MMT" PULSE SEQUENCE Relax, delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.331 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710945 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 1 minute

1H NMR

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

GEMINI-200 "nmr" PULSE SEQUENCE: apt Relax. delay arrayed 1st pulse arrayed 2nd pulse 122.7 degrees Acq. time 2.000 sec Width 15000.0 Hz Arrayed repetitions DBSERVE C13, 50.2827812 MHz DECOUPLE H1, 199.9712807 MHz Power 0 dB on during acquisition WALT2-16 modulated DATA PROCESSING Line broadening 1.5 Hz FT size 65536 Total time 19 minutes

180

140

13C NMR

white

160

113.923

120

80

167

m

89.590

100

60

55.216

20

40

1.1.1

ppm

2930 32768

CDC13

16

0

6.50 usec

1

2.8

EM D

1.00

õ

0.20 Hz

9.35 usec 0.00 dB

298.0 K

201/00427 12.36

151.97 148.80 148.80 198.01	01.01	120-08			56°10		NAME EXPNO PPOCNO Date_ Time INSTRUM PROBHD	S31 MB-69 2 1 20100427 12.47 spect 5 mm BBO BB-1H
13C NMR							PULFROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DW DE TE DI DI DI DI DI TD0	2gpg30 32768 CDC13 402 4 29761.904 Hz 0.908261 Hz 0.5505524 sec 1440 16.800 usec 6.50 usec 298.0 K 2.00000000 sec 0.03000000 sec 1
							NUC1 P1 PL1 PLIW SF01	CHANNEL f1 13C 11.50 usec 3.00 dB 32.22848892 W 125.8043140 MHz
248/1 346).0	ppe						CPDPRG2 NOC2 PCPD2 PL2 PL12 PL13 PL2W PL13W PL13W SFO2 SI SF WDW SSB LB GB PC	CHANNEL f2 walt216 1H 80.00 usec 1.20 dB 18.40 dB 20.76952171 W 0.39575511 W 0.39575511 W 0.39575511 W 500.2617864 MHz 32768 125.7904805 MHz EM 0 1.50 Hz 0 1.40
	and set bic sector						°L	
150 140	130	120	110 100	90	80	70 60 50 40 30 20 10 ppm		

							S33
— 152,22 — 148.42 — 148.42 — 134.65 — 134.65	56. ⁶⁸	82,00	12.86			NAME EXPNO PROCNO Date_ Time INSTROM EROBHD 5	MB-82 2 1 20100520 14.14 spect mm BBC BB-1H
13C NMR						FULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D11 TC D1	AMA BDC 501 11 2gpg30 32768 CDC13 482 4 29761.904 Hz 0.908261 Hz 0.5505524 sec 812 16.800 usec 6.50 usec 298.0 K 2.00000000 sec 0.03000000 sec
Ν						TDU NUC1 PI PL1 PL1W SFO1	IANNEL f1 13C 11.50 usec 3.00 dB 32.22848892 W 125.8043140 MHz
434.7 press						CPDPRG2 NUC2 PCPD2 PL2 PL13 PL13 PL2W PL12W PL12W PL13W SFO2 SI	ANNEL f2 waltz16 1H 80.00 usec 1.20 dB 18.40 dB 18.40 dB 20.76952171 W 0.39575511 W 0.39575511 W 500.2620336 MHz 32768
						SF WDW SSB LB GB PC	125.7904838 MHz EM 0 1.50 Hz 0 1.40
						cı	
150 140 130 1	120 110 100 90	مىسىراسىمى/سى 190	70 60	50 40	30 20 10 p	pm V	,

ORTEP diagram for 2e

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.395 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710956 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 16 minutes

1H NMR

8

4.69 4.65 8.47 9.66 5.64 15.57 7

6

5

4

5.83

4

0.84

4

5.72

in the

10.43

3

5.92

2

they do

17.83

1

ppm

				S42
131.151. 149.69 149.63 149.63 142.65 130. NMK	E8,011 \$4,011 10.701 0.701	 69.06 -	08.1E	NAME. MB-72-D2 EXPNO 2 PROCNO 1 Date 20100330 Time 12.34 INSTRUM spect PROBHD 5 mm PULPROG zgp30 TD 32768 SOLVENT CDC13 NS 802 DS 4 SWH 29761.904 FIDRES 0.908261 AQ 0.5505524 RG 912 DW 16.600 DE 6.55 TE 298.0
				D1 2.0000000 D11 0.03000000 TD0 1 CHANNEL £1 NUC1 130 P1 11.55 PL1 3.00 PL1W 32.22848892 SF01 125.8043140 CPDPEG2 Waltz10 NUC2 11 PCPD2 80.00 PL2 1.22 PL12 18.40 PL13 18.44 PL2W 20.7695217 PL12W 0.3957551 PL13W 0.3957551 PL13W 0.3957551 SF02 500.261894 SI 32761 SF 125.7904803 WDW E1 SSB 1 LB 1.55 G5 1
				Co of of 2g

MB-73

Solvent: cdcl3 Ambient temperature File: hmb73 GEMINI-200 "nmr"

GLMINI-200 "MMF" PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.391 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710956 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 2 minutes

1H NMR

S43

MB-148-1

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

GEMINI-200 "hmf" PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.395 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710962 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 20 minutes

1H NMR

8

1-1-

25.59

S54

ppm

Milha.

1

2

1 - 1

3.71

3

5

1.43 5.51

2.74

4

6

-

0.71

VZ3-57

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.391 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710878 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 1 minute

2m

5

5.16 3.075.03 5.07 11.96 4

1-1-

4.86

4.96

9.41

1H NMR

7

6

S56

ppm

h

2

14.480.35 14.51 1

3

					S60
E1.021	- 19.75 - 89.01 - 79.79 - 70.32 - 63.50 - 57.94	26.31	NAME EXPNO PROCNO Date Time INSTRUM PROBHD PULPROG TD SOLVENT	MB-162 2 1 20110426 12.67 spect 5 mm BBO BB-1H zgpg30 32768 DMSO	
13C NMR			NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D11 D11 TD0	803 4 29761,904 H2 0.908261 H2 0.5505524 se 2050 16.800 us 6.50 Us 339.9 K 2.00000000 se 0.03000000 se 1	L Sec Sec Sc
			NUC1 P1 PL1 PL1W SFO1	CHANNEL f1 13C 11,50 us 3.00 dF 32,22846892 W 125,8043140 Mi	sec 3 Hz
			CPDPRG2 NUC2 PCPD2 PL12 PL13 PL2W PL12W PL12W FL13W SFO2 SI SF WDW SSB LB GB FC	CHANNEL f2 waltz16 1R 80.00 us 1.20 dF 18.40 dF 20.76952171 w 0.39575511 w 500.2615068 MF 32768 125.7965404 MF EM 0 1.50 H: 0 1.40	HZ Z
			1.0		
an sa Ula Ula da ndan di Karanda Mananda Sa kasi na Ula sa da Una Kari ka da da da na Karana na Karanda Aga na Mananan na Karina kati na Karinaka na manana na katanana ka ini manana na manana na manana na manana Manana Mananana na Karina kati na Karinaka na manana na katanana ka ini manana na manana manana manana manana		the thermality and the state of		2n (<i>S</i> , <i>R</i> , <i>R</i>)	
150 140 130 120 110 10	00 90 80 70 60 50	40 30 20 10 ppm			

VZ 2

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

GEMINI-200 "nmr" PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 73.6 degrees Acq. time 1.067 sec Width 15000.0 Hz Arrayed repetitions OBSERVE C13. 50.2827782 MHz DECOUPLE H1, 199.9712807 MHz Power 0 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.5 Hz FT size 32768 Total time 20 minutes

OH

С

20

 \cap

13C NMR

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

GEMINI-200 "nmr" PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.781 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710934 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 2 minutes

7

6

5

3.73

2.60 3.70 3

2

12.79

1

ppm

4

2.74 10.21

1H NMR

о оч

2p

ZT-10a

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 73.6 degrees Acq. time 1.067 sec Width 15000.0 Hz Arrayed repetitions OBSERVE C13, 50.2827782 MHz DECOUPLE H1, 199.9712807 MHz Power 0 dB continuously on WALT2-16 modulated DATA PROCESSING Line broadening 1.5 Hz FT size 32768 Total time 2.5 hours

2p

13C NMR

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

PULSE SEQUENCE Relax. delay arrayed lst pulse arrayed 2nd pulse 73.6 degrees Acq. time 1.067 sec Width 15000.0 Hz Arrayed repetitions OBSERVE C13, 50.2827764 MHz DECOUPLE H1, 199.9712807 MHz Power 0 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.5 Hz PULSE SEQUENCE Line broadening 1.5 Hz FT size 32768 Total time 13.8 hours

,CO2Me

Me

29

H .. Me-

0

S71

MB-94-1

Solvent: cdcl3 Ambient temperature GEMINI-200 "nmr"

GEMINI-200 "MMT" PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.3%1 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710962 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 1 minute

5

hing at

9.25

Λ

8.40

8.07

0.85

6

1H NMR

8

42.13

ppm

1

3

the second

7.53

2

toget.

25.25

121

2.11

MB-141-1

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.388 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710934 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 10 minutes

1H NMR

MB-104-2

220

Solvent: cdc13 Ambient temperature GEMINI-200 "hmr"

GEMINI-200 "nmr" PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 73.6 degrees Acq. time 1.067 sec Width 15000.0 Hz Arrayed repetitions OBSERVE C13, 50.2827782 MHz DECOUPLE H1, 199.9712807 MHz Power 0 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.5 Hz FT size 32768 Total time 31 minutes Total time 31 minutes

ppm

MB-98

20100708

5 mm BBO BB-1H

11.18

spect

noesyph 1024

CDC13

4432.624 Hz

4.328734 Hz 0.1158572 sec

144 112.800 usec

298.0 K

18

0.00 dB

1

8.861 ppm

2

0.00 Hz

0

2.00 512

QSINE

0.00 Hz

Ø

.512 500.2600092 MHr

QSINE

128

500.2619 MHz

34.629848 Hz

States-TPP1

States-TPP1 500.2600087 MH:

4a

9.35 usec

0.00010090 sec 2.00006000 sec 1.00000000 sec

0.00022560 sec

27.37956238 W

500.2619095 MHz

6.50 usec

.B

16

MB-156-F2

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

GEMINI-200 "nmr" PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.335 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710945 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 1 minute Meo

4c

1H NMR

7

15.92

and any

15.29

6

8.00

5

In grant

7.10

4

28.83

3

S85

LAN U

1

ppm

2

24.78

- 1

E.	MB-117-F2	
NO	4	
KINK)	1	
0	20101015	
10	13.56	
TRUM	spect	
BHD	5 mm BBO BB-1H	
PROG	noesuch	
e loue	1024	
UENT	CDC13	
	8	
	16	
÷	4360,465	Hz
RES	4.258267	Hz
ALLES.	0.1174687	Rein .
	151	
	114.667	lised
	6.50	neer
	202 0	K
	0.00010276	800
	2 00000000	200
	1 00000000	een
	0.00000000	Sec
	0-00053335	Sec
	CHANNEL ET	
21	18	
	9.35	USAC
	0.00	dB
W.	27-37966238	W
11	500.2618295	MHż
5		1.1.1.4.
	194	
10	500-2618	MHZ
BES	22,476713	Hz
	8,716	ration
RODE	States-TPP1	b.b.m.
an better	512	
	500.2600067	MH-2
<i>d</i> .	OSTNE	1.1110
	2	
	0.00	H-2
	0100	ite
	1.00	
	512	
2	States-TPPI	
	500 2600086	MHZ
đ	OCTNE.	THEE.
	Kathe	
	0.00	14-2
	0.00	1000
	- V	

				S98
		81.36 	28.18	NAME MB-117-F2 EXPNO 3 PROCNO 1 Date_ 20101015 Time 13,15 INSTRUM spect PROBHD 5 mun PULPROG 2gpg30 TD 32768
13C NMR				SOLVENT CDC13 NS 1024 DS 4 SWH 29761.904 FIDRES 0.908261 AQ 0.5505524 RG 912 DW 16.800 DE 6.50 TE 298.0 D1 2.00000000 Sec TD0
				CHANNEL fl NUC1 13C P1 11.50 usec PL1 3.00 dB PL1W 32.22848692 W SF01 125.8043140 MHz
				CHANNEL f2 CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 1.20 dB PL12 18.40 dB PL13 18.40 dB PL2W 20.76952171 W PL13W 0.39575511 W SFO2 500.2618295 MHz SI 32768 SF 125.7904805 MHz WDW EM SSE 0 LB 1.50 Hz GB 0 PC 1.40
		antint war a light of yet of the state of th	1544 MAR HAR HAR HAR HAR HAR HAR HAR HAR HAR H	
200 190 180 170	0 160 150 140 130 120 11	0 100 90 80 70 60 50	0 40 30 20 10	4j

MB-145-cis

Solvent: cdcl3 Ambient temperature GEMINI-200 "nm"

PULSE SEQUENCE Relax, delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.391 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710956 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 5 minutes

1H NMR

MB-110-F2-1

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

GEMINI-200 "nmr" PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 73.6 degrees Acq. time 1.067 sec Width 15000.0 Hz Arrayed repetitions DBSERVE C13, 50.2827773 MHz DECOUPLE H1, 199.9712807 MHz Power 0 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.5 Hz FT size 32768 Total time 15.1 hours

0

77.637 77.000 76.363 5d 13C NMR 79.403 120.060 101.689 -108.808 84.775 26.857 148.937 129.200 202.831 152.943 in the following the state of the Wasserbuched with the memory and the second and the second of the second of the second s THE PARTY OF 220 200 180 160 1111 140 120 100

80

60

40

20

ppm

135.84 134.20 129.57 126.33 -202.82 152.70 NAME MB-109-F1 84.65 78.54 26.92 EXPNO PROCNO Date 20100906 13.55 Time INSTRUM spect PROBHD 5 mm BBO BB-1H PULPROG zgpg30 TE 32768 SOLVENT CDC13 NS 514 DS 4 SWH 29761.904 Hz 13C NMR FIDRES 0.908261 Hz 0.5505524 se AQ RG 1620 16.800 us DW DE 6.50 us TE 298.0 K D1 2.00000000 se D11 0.03000000 se TD0 1 CHANNEL F1 13C NUC1 P1 11.50 us PL1 3.00 dB 32.22848892 W PL1W SFO1 125.8043140 MH ======= CHANNEL E2 ====== CPDPRG2 waltz16 NUC2 1H PCPD2 80.00 us PL2 1.20 dB 18.40 dB PL12 18.40 dB 20.76952171 W PL13 PL2W 0.39575511 W PL12W PL13W 0.39575511 W 500.2618905 MH SFO2 32768 SI L25.7904802 MH SF EM 0 WDW SSE 1.50 Hz LB. GB Ô 1.40 PC an allocated by factoria a bar of the barbarra for the second for a second for a second s CI 5e an almandanan has alga and a an has alga and a an has a day and a sub-200 190 180 130 120 170 160 150 140 100 90 80 50 30 20 10 ppm 110 70 60

MB-145-TRANS

Solvent: cdc13 Ambient temperature GEMINI-200 "nmr"

GEMINI-200 Thm PULSE SEQUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 90.0 degrees Acq. time 1.391 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9710962 MHz DATA PROCESSING Line broadening 0.2 Hz FT size 16384 Total time 5 minutes

7

3.63

1-1-

17.81

5

3.14

hanged.

2.79

6

1.94

1.67

4

3

2

10.43

1

ppm

1H NMR

S112

