Supplementary information for the paper under the title:

A Useful Synthetic Equivalent of a Hydroxyacetone Enolate

Miljan Bigovic, ${ }^{a}$ Veselin Maslak, ${ }^{\text {a }}$ Zorana Tokic-Vujosevic, ${ }^{\text {b }}$ Vladimir Divjakovic ${ }^{c}$ and Radomir N. Saicic ${ }^{*, a}$
${ }^{\text {a) }}$ Faculty of Chemistry, University of Belgrade, Studentski trg 16, P. O. B. 51, 11158 Belgrade, Serbia, Fax: (+381) 113282 537, E-mail: rsaicic@chem.bg.ac.rs
${ }^{\text {b) }}$ Faculty of Pharmacy, Vojvode Stepe 450, Belgrade
${ }^{c}$ Faculty of Science, Trg Dositeja Obradovica 3, 21000 Novi Sad

Table of content

General experimental
 S2

Synthesis of 4-(bromomethyl)-1,3-dioxol-2-one 1 S3
4-Methyl-1,3-dioxol-2-one S3
4-(Bromomethyl)-1,3-dioxol-2-one 1 S3

General procedure for the allylation of carbonyl compounds S4
with 4-(bromomethyl)-1,3-dioxol-2-one 1
Promoted by indium S4
Promoted by zinc S4
4-(Hydroxy(phenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2a S4
4-(Hydroxy(2-methoxyphenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2b S5
4-(Hydroxy(4-methoxyphenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2c S5
4-(Benzo[d][1,3]dioxol-5-yl(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2d S5
4-((4-Chlorophenyl)(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2e S6
4-(Hydroxy(1H-indol-3-yl)methyl)-5-methylene-1,3-dioxolan-2-one 2f S6
4-(Furan-3-yl(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2g S6
4-(Hydroxy(thiophen-3-yl)methyl)-5-methylene-1,3-dioxolan-2-one 2h S7
4-(1-Hydroxyheptyl)-5-methylene-1,3-dioxolan-2-one 2i S7
(E)-4-(1-Hydroxybut-2-en-1-yl)-5-methylene-1,3-dioxolan-2-one 2j S7
(E)-4-(1-hydroxy-3-phenylallyl)-5-methylene-1,3-dioxolan-2-one 2k S8

4-(2-(Benzyloxy)-1-hydroxyethyl)-5-methylene-1,3-dioxolan-2-one 2I S8
(2R,3R,4R,5S)-5-Hydroxy-5-((S)-5-methylene-2-oxo-1,3-dioxolan-4-yl)pentane- S8
1,2,3,4-tetrayl tetraacetate 2m
(S)-Tert-butyl 4-((R)-hydroxy((R)-5-methylene-2-oxo-1,3-dioxolan-4-yl)methyl)-2,2- S9-dimethyloxazolidine-3-carboxylate $\mathbf{2 n}(S R R)$ and (S)-Tert-butyl4-((S)-hydroxy((S)-5-methylene-2-oxo-1,3-dioxolan-4-yl)methyl)-2,2-dimethyloxazolidine-3-carboxylate 2n (SRR)
4-(1-Hydroxycyclohexyl)-5-methylene-1,3-dioxolan-2-one 20 S9
anti-Methyl 2-hydroxy-2-(5-methylene-2-oxo-1,3-dioxolan-4-yl)propanoate $2 p$ and S10
trans-methyl 5-acetyl-4-methyl-2-oxo-1,3-dioxolane-4-carboxylate 2q
General procedure for the deprotection of enol carbonates 2 into α, β-dihydroxy ketones 3 S10
anti-3,4-Dihydroxy-4-phenylbutan-2-one 3a S10
anti-3,4-Dihydroxy-4-(4-methoxyphenyl)butan-2-one 3c S11
anti-4-(Benzo[d][1,3]dioxol-5-yl)-3,4-dihydroxybutan-2-one 3d S11
anti-3,4-Dihydroxy-4-(4-chlorophenyl)butan-2-one 3e S11
anti-3,4-Dihydroxydecan-2-one 3i S11
General procedure for the rearrangement of enol carbonates $\mathbf{2}$ into cis cyclic carbonates S12
cis-4-Acetyl-5-phenyl-1,3-dioxolan-2-one 4a S12
cis-4-Acetyl-5-(4-methoxyphenyl)-1,3-dioxolan-2-one 4c S12
cis-4-Acetyl-5-(benzo[d][1,3]dioxol-5-yl)-1,3-dioxolan-2-one 4d S12
cis-4-Acetyl-5-(4-chlorophenyl)-1,3-dioxolan-2-one 4e S13
cis-4-Acetyl-5-hexyl-1,3-dioxolan-2-one 4i S13
4-Acetyl-5-((E)-prop-1-en-1-yl)-1,3-dioxolan-2-one: cis isomer 4j and trans isomer 5j S13
(E)-4-Acetyl-5-styryl-1,3-dioxolan-2-one: cis isomer 4k and trans isomer 5k S14
(1S,2R,3R)-1-((4S,5S)-5-acetyl-2-oxo-1,3-dioxolan-4-yl)butane-1,2,3,4-tetrayl tetraacetate 4 m S14
General procedure for the rearrangement of enol carbonates 2 into trans cyclic carbonates 5 S14
trans-4-Acetyl-5-(benzo[d][1,3]dioxol-5-yl)-1,3-dioxolan-2-one 5d and S15
4-(benzo[d][1,3]dioxol-5-yl)-4-hydroxybut-3-en-2-one 6
trans-4-Acetyl-5-(4-chlorophenyl)-1,3-dioxolan-2-one 5e S15
References S15
Scanned spectra S17

General experimental

All chromatographic separations ${ }^{1}$ were performed on Silica, 10-18, 60A, ICN Biomedicals. Standard techniques were used for the purification of reagents and solvents. ${ }^{2}$ Indium was obtained from Aldrich (cat. No. 277959, 99.99% pure, with 1% Mg as anticaking agent). NMR spectra were recorded on a Varian Gemini 200, (${ }^{1} \mathrm{H}$ NMR at $200 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 50 MHz , for samples in deuterated chloroform), and on Bruker Avance III 500 (${ }^{1} \mathrm{H}$ NMR at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 125 MHz). Chemical shifts are expressed in ppm (δ) using tetramethylsilane as internal standard, coupling constants (J) are in Hz. IR spectra were recorded on a Nicolet 6700 FT instrument, and are expressed in cm^{-1}. Mass spectra were obtained on Agilent technologies 6210 TOF LC/MS instrument (LC: series 1200). Microanalyses were performed at the Vario EL III instrument CHNOS Elementar Analyzer, Elementar

Analysensysteme GmbH, Hanau-Germany. Melting points were determined on a Kofler hot-stage apparatus and are uncorrected. 1-Tosyl-1H-indole-3-carbaldehyde ${ }^{3}$ and enantiomerically pure 2,3,4,5-tetra-O-acetyl-D-arabinose ${ }^{4}$ were prepared according to literature procedures.

X-ray crystal structure determination

A single colorless crystal was selected and glued on glass fiber. Diffraction data were collected on an Oxford Diffraction KM4 four-circle goniometer equipped with Sapphire CCD detector. The crystal to detector distance was 45.0 mm and a graphite monochromated MoKa ($\lambda=0.71073 \AA$) X-radiation was employed in the measurements. The frame widths of 1° in ω, with 19 and 27 s were used to acquire each frame. More than a hemisphere of three-dimensional data was collected in all measurements. The data were reduced using the Oxford Diffraction program CrysAlis ${ }^{\text {Pro }}$. A semiempirical absorption-correction based upon the intensities of equivalent reflections was applied, and the data were corrected for Lorentz, polarization, and background effects. Scattering curves for neutral atoms, together with anomalous-dispersion corrections, were taken from International Tables for X-ray Crystallography. ${ }^{5}$ The structures were solved by direct methods, ${ }^{6}$ and the figures were drawn using MERCURY. ${ }^{9}$ Refinements were based on F^{2} values and done by full-matrix least-squares ${ }^{8}$ with all non-H atoms anisotropic. The positions of all non H -atoms were located by direct methods. The positions of hydrogen atoms were found from the inspection of the difference Fourier maps. The final refinement included atomic positional and displacement parameters for all non-H atoms. The non-H atoms were refined anisotropically. However, at the final stage of the refinement, H atoms belonging to molecules were positioned geometrically ($\mathrm{O}-\mathrm{H}=0.82$ and $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$) and refined using a riding model with fixed isotropic displacement parameters.

4-Methyl-1,3-dioxol-2-one

This compound was obtained in two steps, from hydroxyacetone, according to the modified literature procedure described for the preparation of the 4,5-dimethyl derivative. ${ }^{9}$ Triphosgene ($3.0 \mathrm{~g} ; 11 \mathrm{mmol}$) was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of hydroxyacetone ($2.1 \mathrm{~g} ; 28 \mathrm{mmol}$) in dichloroethane (20 mL), followed by a dropwise addition of N, N-dimethylaniline ($3.7 \mathrm{~g} ; 4 \mathrm{~mL} ; 30 \mathrm{mmol}$), while maintaining temperature below $8^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$, then two more hours at rt. The reaction mixture was cooled to $5^{\circ} \mathrm{C}$, washed with cold 3 M aqueous hydrochloric acid (40 mL), water (30 mL) and brine (30 mL), dried over anh. MgSO_{4}, filtered and concentrated under reduced pressure to the half of the initial volume. The residue was heated to reflux for three hours. The solvent was completely removed at rotavap, and the remaining oil was heated in a stream of argon to $170{ }^{\circ} \mathrm{C}$, for two and half hours, when considerable darkening occurs. The crude mixture was distilled under reduced pressure, to give 1.4 g (52\%) of 4-methyl-1,3-dioxol-2-one, bp $130-140{ }^{\circ} \mathrm{C} / 30 \mathrm{mmHg}$, as a light-yellow oil. Although the compound has been mentioned in the literature, ${ }^{10}$ no spectral data were given: $\mathrm{IR}_{\text {film }}$: 3169, 2934, 1828, 1801, 1124, 1071. ${ }^{1} \mathrm{H}$ NMR: $6.84(\mathrm{q}, \mathrm{J}=1.6, \mathrm{H}) ; 2.13(\mathrm{~d}, \mathrm{~J}=1.6,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 153.4 (C); 141.1 (C); $126.0(\mathrm{CH}) ; 9.7\left(\mathrm{CH}_{3}\right)$. Anal. calcd. for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{3}: \mathrm{C} 48.00 ; \mathrm{H} 4.00$; found: C 47.93; H 4.16.

4-(Bromomethyl)-1,3-dioxol-2-one 1

This compound was obtained according to the literature procedure. ${ }^{11}$ A mixture of 4-methyl-1,3-dioxol-2-one ($1 \mathrm{~g} ; 10 \mathrm{mmol}$), N -bromosuccinimide ($2.3 \mathrm{~g} ; 13 \mathrm{mmol}$), azo-bis-isobutyronitrile (AIBN; 10 mg) and carbon tetrachloride (40 mL) was heated to reflux for 1.5 h . The reaction mixture was concentrated to the half of the initial volume, filtered, concentrated at rotavap and distilled under reduced pressure, to give $1.3 \mathrm{~g}(72 \%)$ of 4 -(bromomethyl)-1,3-dioxol-2-one 1, as a light-yellow oil, bp $\left.100-110^{\circ} \mathrm{C} / 1 \mathrm{mmHg}\right)$. No ${ }^{13} \mathrm{C}$ NMR data are provided in the literature, and the literature ${ }^{1} \mathrm{H}$ NMR was
recorded in $\mathrm{CCl}_{4}: \mathrm{IR}_{\text {film }}: 3169,2934,1828,1801,1124,1071 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 7.12(\mathrm{t}, \mathrm{J}=1.2, \mathrm{H}), 4.19$ (d, J=1.2, 2H) ${ }^{13} \mathrm{C}$ NMR: 153.4 (C); 141.1 (C); $126.0(\mathrm{CH}) ; 9.7\left(\mathrm{CH}_{3}\right)$. Anal. calcd. for $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{BrO}_{3}$: C 26.82; H 1.68; Found: C 26.74; H 1.81.

Due to a ban on the use of carbon tetrachloride, the possibility of using other solvents was investigated. The reaction could be performed in an analogous way in 1,2-dichloroethane: under these conditions 4-(bromomethyl)-1,3-dioxol-2-one 1 was obtained in 49% yield.

General procedure for the allylation of carbonyl compounds with 4-(bromomethyl)-1,3-dioxol-

2-one 1

Indium-promoted allylation

Aldehyde (0.19 mmol) was added to a mixture of $1(50 \mathrm{mg} ; 0.28 \mathrm{mmol})$, indium ($32.1 \mathrm{mg} ; 0.28 \mathrm{mmol}$), THF (0.5 mL) and water (1 mL), and the reaction mixture was stirred at rt . The reaction was monitored by TLC (eluent: 20% acetone in petroleum-ether) and it was usually complete after 15 min . The reaction mixture was diluted with dichloromethane (5 mL) and water (5 mL), the aqueous layer was extracted with dichloromethane ($2 \times 5 \mathrm{~mL}$), combined organic extracts were dried over anh. MgSO_{4}, filtered, concentrated under reduced pressure and the crude product was purified by dry-flash chromatography.

Zinc-promoted allylation

Aldehyde (0.09 mmol) was added to a mixture of $1(50 \mathrm{mg} ; 0.28 \mathrm{mmol})$, zinc ($23 \mathrm{mg} ; 0.36 \mathrm{mmol}$), THF $(0.2 \mathrm{~mL})$ and saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(0.8 \mathrm{~mL})$, and the reaction mixture was stirred at rt . The reaction was monitored by TLC (eluent: 20% acetone in petroleum-ether) and it was usually complete after 30 min . Work-up as previously described provided the crude product, which was purified by dry-flash chromatography.

4-(Hydroxy(phenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2a

According to the general procedure for the indium-mediated allylation, starting from benzaldehyde ($19.7 \mathrm{mg}, 19 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$); after purification by column chromatography (eluent: 20% acetone in hexanes), $37.7 \mathrm{mg}(96 \%)$ of the title compound $\mathbf{2 a}$ was obtained, as a mixture of diastereoisomers in a ratio anti:syn=12:1. Recrystallization from 5\% EtOAc in hexanes afforded white crystals of pure 2aanti, mp 70-71 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr): 3477, 3064, 2891, 1832, 1690, 1341, 1280, 1147, 1062, 766, 708. ${ }^{1} \mathrm{H}$ NMR $\delta: 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.28$ (ddd, $J_{1}=4.1, J_{2}=2.3, J_{3}=1.7,1 \mathrm{H}$), 5.14 (bt, J=4.1, 1H), 4.78 (dd, $J_{1}=3.9, J_{2}=2.3,1 \mathrm{H}$), $3.87\left(\mathrm{dd}, J_{1}=3.9, J_{2}=1.7,1 \mathrm{H}\right), 2.78(\mathrm{~d}, \mathrm{~J}=4.1,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 152.3(\mathrm{C}), 148.6$ $(\mathrm{C}), 136.1(\mathrm{C}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 126.4(\mathrm{CH}), 89.7\left(\mathrm{CH}_{2}\right), 82.3(\mathrm{CH}), 73.4(\mathrm{CH})$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4}+\mathrm{NH}_{4}^{+}\right]$: 224.0923 , found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 224.0911$. Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4}$: C 64.08, H 4.85; found: C 63.81, H 4.73.

4-(Hydroxy(2-methoxyphenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2b

According to the general procedure for the indium-mediated allylation, starting from 2-methoxybenzaldehyde ($38 \mathrm{mg}, 0.28 \mathrm{mmol}$); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 38 mg (57\%) of $\mathbf{2 b}$-anti, followed by 29 mg (39\%) of $\mathbf{2 b}$-syn (Combined yield: 63.4 mg ; 96\%). Physical data for 2b-anti: recrystallized from 5\% EtOAc in hexanes, white solid, $\mathrm{mp} 106-108{ }^{\circ} \mathrm{C}$. FT-IR (KBr): 3487, 3011, 2969, 1809, 1690, 1492, 1346, 1248, 1158, 1054, 756. ${ }^{1} \mathrm{H}$ NMR $\delta: 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.01\left(\mathrm{td}, J_{1}=7.9, J_{2}=0.7,1 \mathrm{H}\right), 6.90\left(\mathrm{dd}, \mathrm{J}_{1}=7.9, J_{2}=1.3\right.$, $1 \mathrm{H}), 5.42\left(\mathrm{ddd}, \mathrm{J}_{1}=3.3, J_{2}=2.2, J_{3}=1.5,1 \mathrm{H}\right), 5.38\left(\mathrm{dd}, J_{1}=5.7, J_{2}=3.3,1 \mathrm{H}\right), 4.76\left(\mathrm{dd}, \mathrm{J}_{1}=3.7 \mathrm{~J}_{2}=2.2,1 \mathrm{H}\right)$, 3.87 ($\mathrm{s}, 3 \mathrm{H}$), 3.68 (dd, $J_{1}=3.7, J_{2}=1.5,1 \mathrm{H}$), 3.02 (d, J=5.7, 1H). ${ }^{13} \mathrm{C}$ NMR $\delta: 155.7$ (C), 152.7 (C), $149.0(\mathrm{C}), 129.6(\mathrm{CH}), 128.0(\mathrm{CH}), 124.1(\mathrm{C}), 120.7(\mathrm{CH}), 110.1(\mathrm{CH}), 89.3\left(\mathrm{CH}_{2}\right), 80.5(\mathrm{CH}), 69.5$ $(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}+\mathrm{NH}_{4}^{+}\right]: 254.1028$, found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 254.1026$. Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$: C 61.02, H 5.08; found: C 60.68; H 5.14. Physical data for 2b-syn: recrystallized from 5% EtOAc in hexanes, white solid, mp $80^{\circ} \mathrm{C}$. FT-IR (KBr): 3462, 3072, 2970, 1807, 1684, 1603, 1493, 1463, 1359, 1236, 1164, 1084, 1050, 848, 763. ${ }^{1} \mathrm{H}$ NMR $\delta: 7.44$ (dd, $J_{1}=7.8$, $\left.J_{2}=1.5,1 \mathrm{H}\right), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.02\left(\mathrm{td}, \mathrm{J}_{1}=7.8, J_{2}=0.7,1 \mathrm{H}\right), 6.93-6.91(\mathrm{~m}, 1 \mathrm{H}), 5.36\left(\mathrm{ddd}, \mathrm{J}_{1}=3.7\right.$, $\left.J_{2}=2.0, J_{3}=1.7,1 H\right), 5.17\left(\mathrm{dd}, \mathrm{J}_{1}=6.0, J_{2}=3.7,1 \mathrm{H}\right), 4.90\left(\mathrm{dd}, J_{1}=3.9, J_{2}=2.0,1 \mathrm{H}\right), 4.25\left(\mathrm{dd}, J_{1}=3.9\right.$, $\left.J_{2}=1.7,1 \mathrm{H}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~d}, \mathrm{~J}=6.0,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 156.1$ (C), 152.1 (C), 151.0 (C), 129.8 (CH), $128.0(\mathrm{CH})$, $125.3(\mathrm{C}), 121.0(\mathrm{CH}), 110.5(\mathrm{CH}), 87.7\left(\mathrm{CH}_{2}\right), 81.5(\mathrm{CH}), 71.1(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$: 236.0685, found for $[\mathrm{M}]^{+}: 236.0677$. Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}: \mathrm{C} 61.02, \mathrm{H}$ 5.08; found: C 60.77, H 5.26.

4-(Hydroxy(4-methoxyphenyl)methyl)-5-methylene-1,3-dioxolan-2-one 2c

According to the general procedure for the indium-mediated allylation, starting from 4-methoxybenzaldehyde ($25.8 \mathrm{mg}, 23 \mu \mathrm{l}, 0.19 \mathrm{mmol}$); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 36.6 mg (82%) of the title compound $\mathbf{2 c}$, as a mixture of diastereoisomers in a ratio anti:syn=8:1 (the ratio of diastereoisomers did not change after crystallization from 5\% EtOAc in hexanes). White crystals, m.p. 60-2 ${ }^{\circ} \mathrm{C}$. Spectral data for 2c: FT-IR (KBr): 3478, 3013, 2960, 1828, 1690, 1514, 1250, 1145, 1055, 849, 764. ${ }^{1} \mathrm{H}$ NMR $\delta: 7.29$ (d, J=9.0, 2 H), $6.90(\mathrm{~d}, \mathrm{~J}=9.0,2 \mathrm{H}), 5.25\left(\mathrm{ddd}, J_{1}=4.0, J_{2}=2.2, J_{3}=1.8,1 \mathrm{H}\right), 5.03\left(\mathrm{bt}, J_{1}=4.0,1 \mathrm{H}\right), 4.81\left(\mathrm{dd}, J_{1}=3.4\right.$, $\left.J_{2}=2.2,1 \mathrm{H}\right), 3.95\left(\mathrm{dd}, \mathrm{J}_{1}=3.4, \mathrm{~J}_{2}=1.8,1 \mathrm{H}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 159.8(\mathrm{C})$, $148.8(\mathrm{C}), 128.5(\mathrm{C}), 128.2(\mathrm{C}), 127.8(\mathrm{CH}), 113.9(\mathrm{CH}), 89.5\left(\mathrm{CH}_{2}\right), 82.3(\mathrm{CH}), 73.2(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for [$\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}+\mathrm{Na}^{+}\right]$: 259.0582, found for [M+Na] ${ }^{+}$: 259.0577.

4-(Benzo[d][1,3]dioxol-5-yl(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2d

According to the general procedure for the indium-mediated allylation, starting from piperonal (28 mg , 0.19 mmol); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded $45.2 \mathrm{mg}(95 \%)$ of the title compound 2d, as a mixture of diastereoisomers in a ratio anti:syn=6:1. White crystals (recrystallized from 10% EtOAc in petroleum-ether), m.p. 103-4 ${ }^{\circ} \mathrm{C}$. Spectral data for 2d: FT-IR (KBr): 3455, 3020, 2909, 1825, 1695, 1499, 1338, 1246, 1160, 1062, 1036, 931, 865, 742. ${ }^{1} \mathrm{H}$ NMR $\delta: ~ 6.89-6.82(\mathrm{~m}, 3 \mathrm{H}), 5.99(\mathrm{bs}, 2 \mathrm{H}), 5.21$ (ddd, $\left.J_{1}=4.2, J_{2}=2.3, J_{3}=1.9,1 \mathrm{H}\right), 5.00$ (bt, J=4.2, $1 \mathrm{H}), 4.87\left(\mathrm{dd}, J_{1}=3.8, J_{2}=2.3,1 \mathrm{H}\right), 4.05\left(\mathrm{dd}, \mathrm{J}_{1}=3.8, J_{2}=1.9,1 \mathrm{H}\right), 2.51(\mathrm{bd}, \mathrm{J}=4.2,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta:$ 152.0 (C), 148.8 (C), 148.0 (C), 148.0 (C), 130.1 (C), 120.1 (CH), 108.4 (CH), 106.9 (CH), 101.4
$\left(\mathrm{CH}_{2}\right), 89.8\left(\mathrm{CH}_{2}\right), 82.0(\mathrm{CH}), 73.6(\mathrm{CH})$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{6}+\mathrm{Na}^{+}\right]: 273.0375$, found for $[\mathrm{M}+\mathrm{Na}]^{+}: 273.0356$. Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{6}$: C 57.60, H 4.00; found: C 57.29, H 4.25.

4-((4-Chlorophenyl)(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2e

According to the general procedure for the indium-mediated allylation, starting from 4-chlorobenzaldehyde ($33 \mathrm{mg}, 0.23 \mathrm{mmol}$); purification by column chromatography (eluent: 30% acetone in petroleum-ether) afforded 52.8 mg (96%) of the title compound $\mathbf{2 e}$, as a mixture of diastereoisomers in a ratio anti:syn=7:1. Monocrystal of pure $\mathbf{2 e}$-anti, suitable for X-ray crystallographic analysis, was obtained by crystallization from 5\% EtOAc in hexanes. Physical data for 2e-anti: white, crystalline compound, mp $88-90{ }^{\circ} \mathrm{C}$. FT-IR (KBr): 3847, 3075, 2983, 1816, 1691, 1342, 1154, 1062, 871, $744 .{ }^{1} \mathrm{H}$ NMR $\delta: 7.39$ (d, J=8.5, 2H), 7.34 (d, J=8.5, 2H), 5.24 (ddd, $J_{1}=4.4, J_{2}=2.0, J_{3}=1.8,1 H$), 5.11 (bt, $J=4.4,1 \mathrm{H}), 4.84\left(\mathrm{dd}, J_{1}=4.0, J_{2}=2.0,1 \mathrm{H}\right), 3.91\left(\mathrm{dd}, J_{1}=4.0, J_{2}=1.8,1 \mathrm{H}\right), 2.96(\mathrm{~d}, \mathrm{~J}=4.4,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ס: 152.2 (C), 148.4 (C), 134.7 (C), 134.6 (C), $128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 89.9\left(\mathrm{CH}_{2}\right), 82.0(\mathrm{CH}), 72.9$ (CH). HRMS (ESI): calcd. for [$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{Cl}+\mathrm{Na}^{+}$]: 263.0087, found for [M+Na] ${ }^{+}$: 263.0083. Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{Cl}$: C 54.88, H 3.74; found: C 54.67, H 3.79.

4-(Hydroxy(1-tosyl-1H-indol-3-yl)methyl)-5-methylene-1,3-dioxolan-2-one 2f

According to the general procedure for the indium-mediated allylation, starting from 1-tosyl-1H-indole3 -carbaldehyde ($23 \mathrm{mg}, 77 \mu \mathrm{~mol}$); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded $23 \mathrm{mg}(78 \%)$ of the title compound 2f. Physical data for 2f: pale-yellow oil, FT-IR (film): 3483, 3058, 2927, 1833, 1690, 1447, 1370, 1274, 1173, 1126, 1065, 744, 674, $574 .{ }^{1} \mathrm{H}$ NMR ס: 8.03 (d, J=8.4, 1H), 7.78 (d, J=7.8, 2H), 7.86 (s, 1H), 7.53 (d, J=7.8, 1H), 7.41-7.22 (m, 4H), $5.35(\mathrm{bs}, 2 \mathrm{H}), 4.78-4.76(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.76(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{bs}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 152.2(\mathrm{C})$, 148.3 (C), 145.4 (C), 135.2 (C), 134.7 (C), 130.0 (C), 127.7 (C), 126.9 (CH), 125.4 (CH), 125.2 (CH), $123.7(\mathrm{CH}), 119.4(\mathrm{CH}), 118.3(\mathrm{CH}), 114.0(\mathrm{CH}), 89.8\left(\mathrm{CH}_{2}\right), 80.6(\mathrm{CH}), 68.4(\mathrm{CH}), 21.5\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{~S}+\mathrm{Na}^{+}\right]: 422.0674$, found for $[\mathrm{M}+\mathrm{Na}]^{+}: 422.0683$.

4-(Furan-2-yl(hydroxy)methyl)-5-methylene-1,3-dioxolan-2-one 2g

According to the general procedure for the indium-mediated allylation, starting from furane-2carbaldehyde ($18.2 \mathrm{mg}, 0.19 \mathrm{mmol}$); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 21 mg (56%) of $\mathbf{2 g}$-anti, followed by 10 mg (27%) of $\mathbf{2 g}$-syn (combined yield: 83\%). Physical data for 2g-anti: colorless oil. FT-IR (film): 3460, 2925, 1827, 1692, 1345, 1271, 1144, 1061, 859, 749. ${ }^{1} \mathrm{H}$ NMR $\delta: 7.45$ (dd, $J_{1}=1.9, J_{2}=0.9,1 \mathrm{H}$), 6.46-6.45 ($\mathrm{m}, \mathrm{J}_{1}=3.3, J_{2}=0.9,1 \mathrm{H}$), $6.42\left(\mathrm{dd}, J_{1}=3.3, J_{2}=1.9,1 \mathrm{H}\right), 5.45\left(\mathrm{ddd}, J_{1}=3.7, J_{2}=2.2, J_{3}=2.0,1 \mathrm{H}\right), 5.08\left(\mathrm{ddd}, J_{1}=6.8, J_{2}=3.7, J_{3}=0.7\right.$, $1 \mathrm{H}), 4.90\left(\mathrm{dd}, J_{1}=3.9, J_{2}=2.2,1 \mathrm{H}\right), 4.10\left(\mathrm{dd}, J_{1}=3.9, J_{2}=2.0,1 \mathrm{H}\right), 2.57(\mathrm{~d}, \mathrm{~J}=6.8,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta:$ $151.8(\mathrm{C}), 149.8(\mathrm{C}), 148.5(\mathrm{C}), 143.0(\mathrm{CH}), 110.8(\mathrm{CH}), 109.1(\mathrm{CH}), 89.5\left(\mathrm{CH}_{2}\right), 80.2(\mathrm{CH}), 68.9$ (CH). HRMS (ESI): calcd. for [$\left.\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{5}+\mathrm{CH}_{3} \mathrm{COO}\right]: 255.0505$, found for [$\mathrm{M}+\mathrm{CH}_{3} \mathrm{COO}$]: 255.0518. Physical data for 2g-syn: colorless oil. FT-IR (film): 3461, 2926, 1823, 1692, 1352, 1278, 1148, 1072, 860,747 . ${ }^{1} \mathrm{H}$ NMR $\delta: 7.45\left(\mathrm{dd}, J_{1}=1.8, J_{2}=1.0,1 \mathrm{H}\right), 6.48\left(\mathrm{dt}, J_{1}=2.6, J_{2}=1.0,1 \mathrm{H}\right), 6.42\left(\mathrm{dd}, J_{1}=2.6\right.$, $\left.J_{2}=1.8,1 \mathrm{H}\right), 5.42\left(\mathrm{ddd}, J_{1}=4.9, J_{2}=2.3, J_{3}=2.0,1 \mathrm{H}\right), 4.93\left(\mathrm{dd}, J_{1}=4.2, J_{2}=2.3,1 \mathrm{H}\right), 4.91(\mathrm{t}, \mathrm{J}=4.9,1 \mathrm{H})$, 4.22 (dd, $\left.J_{1}=4.2, J_{2}=2.0,1 \mathrm{H}\right), 2.56(\mathrm{~d}, \mathrm{~J}=4.9,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 151.6$ (C), 149.9 (C), 149.6 (C), 143.2 $(\mathrm{CH}), 110.8(\mathrm{CH}), 109.6(\mathrm{CH}), 88.8\left(\mathrm{CH}_{2}\right), 80.1(\mathrm{CH}), 69.1(\mathrm{CH})$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{5}+\right.$ $\left.\mathrm{HCOO}^{-}\right]: 241.0348$, found for [M+HCOO]: 241.0358 .

4-(Hydroxy(thiophen-2-yl)methyl)-5-methylene-1,3-dioxolan-2-one 2h

According to the general procedure for the indium-mediated allylation, starting from thiophene-2carbaldehyde ($21 \mathrm{mg}, 0.19 \mathrm{mmol}$); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded $36.5 \mathrm{mg}(91 \%)$ of $\mathbf{2 h}$, as a mixture of diastereoisomers in a ratio anti:syn=6.4:1.
Physical data for 2h: pale-yellow oil, FT-IR (film): 3462, 3111, 3023, 1828, 1691, 1346, 1273, 1145, 1057, 856, 709. ${ }^{1} \mathrm{H}$ NMR $\delta: 7.34$ (dd, $J_{1}=1.8, J_{2}=1.6,1 \mathrm{H}$), 7.09-7.02 (m, 2H), 5.36-5.27 (m, 2H), 4.88 (dd, $\left.J_{1}=3.6, J_{2}=1.9,1 \mathrm{H}\right), 4.12$ (dd, $\left.J_{1}=3.6, J_{2}=1.6,1 \mathrm{H}\right), 3.29$ (d, J=5.0, 1H). ${ }^{13} \mathrm{C}$ NMR $\delta: 152.1$ (C), $148.5(\mathrm{C}), 139.6(\mathrm{C}), 127.3(\mathrm{CH}), 126.1(\mathrm{CH}), 125.4(\mathrm{CH}), 89.9\left(\mathrm{CH}_{2}\right), 81.9(\mathrm{CH}), 70.8(\mathrm{CH}) . \mathrm{HRMS}$ (ESI): calcd. for [$\left.\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}+\mathrm{Na}^{+}\right]: 235.0041$, found for $[\mathrm{M}+\mathrm{Na}]^{+}: 235.0027$.

4-(1-Hydroxyheptyl)-5-methylene-1,3-dioxolan-2-one 2i

According to the general procedure for the indium-mediated allylation, starting from heptanal (16 mg , 0.14 mmol); purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 26.4 mg (88%) of $\mathbf{2 i}$, as an unseparable mixture of diastereoisomers in a ratio anti:syn=6:1. Physical data for 2 i : colorless oil, FT-IR (film): 3479, 2930, 2856, 1831, 1690, 1463, 1348, 1157, 1069. ${ }^{1}$ H NMR $\delta: 5.04$ (ddd, $\left.J_{1}=3.8, J_{2}=2.2, J_{3}=1.9,1 \mathrm{H}\right), 4.97\left(\mathrm{dd}, J_{1}=3.8, J_{2}=2.2,1 \mathrm{H}\right), 4.49\left(\mathrm{dd}, J_{1}=3.8, J_{2}=1.9,1 \mathrm{H}\right)$, $3.84(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.8,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 152.3$ $(\mathrm{C}), 149.9(\mathrm{C}), 89.0\left(\mathrm{CH}_{2}\right), 82.0(\mathrm{CH}), 72.0(\mathrm{CH}), 31.6\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 22.5$ $\left(\mathrm{CH}_{2}\right)$, $14.0\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}+\mathrm{NH}_{4}{ }^{+}\right.$: 232.1549 , found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 232.1531.

(E)-4-(1-Hydroxybut-2-en-1-yl)-5-methylene-1,3-dioxolan-2-one 2j

According to the general procedure for the indium-mediated allylation, starting from crotonaldehyde ($13 \mathrm{mg}, 0.19 \mathrm{mmol}$), purification by column chromatography (eluent: 20% acetone in petroleum-ether) afforded 26.4 mg (82%) of $\mathbf{2 j}$, as an unseparable, equimolar mixture of diastereoisomers. Physical data for $\mathbf{2 j}$: colorless oil, FT-IR (film): 3464, 3025, 2920, 1825, 1690, 1448, 1348, 1276, 1146, 1067, 971. ${ }^{1} \mathrm{H}$ NMR $\delta: 5.96-5.88$ (m, 2H, anti, syn), 5.55 (ddq, $J_{1}=15.0, J_{2}=3.0, J_{3}=1.5,1 \mathrm{H}$, anti), 5.49 (ddq, $J_{1}=15.5, J_{2}=3.5, J_{3}=1.8,1 \mathrm{H}$, syn), 5.09 (ddd, $J_{1}=5.5, J_{2}=3.0, J_{3}=1.5,1 \mathrm{H}$, syn), 5.07 (ddd, $J_{1}=4.3$, $J_{2}=2.5, J_{3}=1.3,1 \mathrm{H}$, anti), 4.95 (dd, $J_{1}=2.3, J_{2}=1.5,1 \mathrm{H}$, anti), 4.94 (dd, $J_{1}=2.3, J_{2}=1.3,1 \mathrm{H}$, syn), 4.52 (dd, $J_{1}=3.0, J_{2}=2.3,1 \mathrm{H}$, anti), 4.47 (dd, $J_{1}=2.5, J_{2}=2.3,1 \mathrm{H}$, syn), 4.39 (bs, 1 H, syn), 4.28 (bdd, $J_{1}=3.0$, $J_{2}=4.3,1 \mathrm{H}$, anti), 2.45 (bs, 1H, syn), 2.30 (bs, 1 H , anti), 1.78-1.76 (m, 6H, anti, syn). ${ }^{13} \mathrm{C}$ NMR $\delta: 2 \mathrm{j}-$ anti: $152.1(\mathrm{C}), 150.2(\mathrm{C}), 132.9(\mathrm{CH}), 126.3(\mathrm{CH}), 88.4\left(\mathrm{CH}_{2}\right), 81.2(\mathrm{CH}), 73.4(\mathrm{CH}), 17.8\left(\mathrm{CH}_{3}\right)$; 2jsyn: $152.2(\mathrm{C}), 149.4(\mathrm{C}), 131.9(\mathrm{CH}), 125.4(\mathrm{CH}), 89.0\left(\mathrm{CH}_{2}\right), 81.7(\mathrm{CH}), 72.8(\mathrm{CH}), 17.8\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}+\mathrm{NH}_{4}{ }^{+}\right.$]: 188.0923, found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 188.0914.

(E)-4-(1-hydroxy-3-phenylallyl)-5-methylene-1,3-dioxolan-2-one 2k

According to the general procedure for the indium-mediated allylation, starting from cinnamaldehyde $(25 \mathrm{mg}, 0.19 \mathrm{mmol})$, purification by column chromatography (eluent: 30% acetone in petroleum-ether) afforded $40 \mathrm{mg}(91 \%)$ of $\mathbf{2 k}$, as an unseparable mixture of diastereoisomers in a ratio anti:syn=1.4:1. Physical data for 2k: colorless oil, FT-IR (film): 3466, 3027, 1828, 1690, 1344, 1274, 1147, 1066, 973, 859, 754. ${ }^{1} \mathrm{H}$ NMR $\delta: 7.40-7.28(\mathrm{~m}, 10 \mathrm{H}), 6.79\left(\mathrm{dd}, \mathrm{J}_{1}=16.0, J_{2}=1.3,1 \mathrm{H}\right.$, anti), $6.77(\mathrm{~d}, \mathrm{~J}=16.0,1 \mathrm{H}$, syn), 6.24 (dd, $J_{1}=16.0, J_{2}=7.5,1 \mathrm{H}$, syn), 6.15 (dd, $J_{1}=16.0, J_{2}=5.5,1 \mathrm{H}$, anti), 5.18-5.15 (m, 2H, anti, syn), 4.98 (dd, $J_{1}=3.8, J_{2}=2.3,1 \mathrm{H}$, syn), 4.95 (dd, $J_{1}=4.0, J_{2}=2.0,1 \mathrm{H}$, anti), 4.66-4.64 ($\mathrm{m}, 1 \mathrm{H}$, anti), 4.55 (dd, $J_{1}=3.8, J_{2}=1.8,1 \mathrm{H}$, syn), 4.50 (ddd, $J_{1}=7.5, J_{2}=3.8, J_{3}=1.3,1 \mathrm{H}$, syn), 4.48 (dd, $J_{1}=4.0$, $J_{2}=2.0,1 \mathrm{H}$, anti), $2.63(\mathrm{bs}, 1 \mathrm{H}), 2.45(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 2 k$-anti: 152.1 (C), 149.1 (C), 135.5 (CH), $128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{C}), 126.7(\mathrm{CH}), 123.2(\mathrm{CH}), 89.3\left(\mathrm{CH}_{2}\right), 81.5(\mathrm{CH}), 72.7(\mathrm{CH}) ; 2 k-$ syn: $152.0(\mathrm{C}), 150.0(\mathrm{C}), 128.7(\mathrm{CH}), 128.6(\mathrm{C}), 128.5(\mathrm{CH}), 126.8(\mathrm{CH}), 134.5(\mathrm{CH}), 123.9(\mathrm{CH}), 88.7$ $\left(\mathrm{CH}_{2}\right), 81.3(\mathrm{CH}), 73.6(\mathrm{CH})$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}+\mathrm{NH}_{4}{ }^{+}\right]$: 250.1079 , found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 250.1070.

4-(2-(Benzyloxy)-1-hydroxyethyl)-5-methylene-1,3-dioxolan-2-one 2I

According to the general procedure for the indium-mediated allylation, starting from benzyloxyacetaldehyde ($10 \mathrm{mg}, 67 \mu \mathrm{~mol}$), purification by column chromatography (eluent: 20\% acetone in petroleum-ether) afforded $12.2 \mathrm{mg}(76 \%)$ of $\mathbf{2 I}$, as an unseparable mixture of syn and anti diastereoisomers in a ratio anti:syn=3:1, as determined by HPLC analysis. Physical data for 2I: paleyellow oil, FT-IR (film): 3457, 3064, 3030, 2922, 2870, 1832, 1690, 1454, 1328, 1272, 1147, 1061, 858, 747, 700. ${ }^{1} \mathrm{H}$ NMR $\delta: 7.46-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.22$ (dd, $J_{1}=2.6, J_{2}=4.8,1 \mathrm{H}$, syn), 5.17 (ddd, $J_{1}=1.7$, $J_{2}=3.9, J_{3}=5.6,1 \mathrm{H}$, anti), 4.94-4.92 (m, 2H, anti, syn), 4.57-4.50 (m,3H), 4.43 (dd, J $=1.7 \mathrm{~Hz}, J_{2}=3.9$ $\mathrm{Hz}, 1 \mathrm{H}$, anti), 3.99-3-97 (m, 2H, anti, syn), 3.68-3.62 (m, 2H), 2.67 (bs, 1H, anti), 2.47 (bs, 1H, syn). ${ }^{13} \mathrm{C}$ NMR $\delta: 152.0$ (C), 150.7 (C), 150.0 (C), 137.0 (C), 128.6 (CH), 128.2 (CH), 128.2 (CH), 128.1 (CH), $128.0(\mathrm{CH}), 128.0(\mathrm{CH}), 89.4\left(\mathrm{CH}_{2}\right.$, anti), $87.7\left(\mathrm{CH}_{2}\right.$, syn), $79.0(\mathrm{CH}$, syn), $78.6(\mathrm{CH}$, anti), 73.7 $\left(\mathrm{CH}_{2}\right), 71.2(\mathrm{CH}$, syn $), 70.4\left(\mathrm{CH}\right.$, anti), $69.2\left(\mathrm{CH}_{2}\right.$, syn $), 68.8\left(\mathrm{CH}_{2}\right.$, anti). HRMS (ESI): calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5}+\mathrm{Na}^{+}\right]:$273.0739, found for $[\mathrm{M}+\mathrm{Na}]^{+}: 273.0738$.

($2 R, 3 R, 4 R, 5 S$)-5-hydroxy-5-((S)-5-methylene-2-oxo-1,3-dioxolan-4-yl)pentane-1,2,3,4-tetrayl

 tetraacetate $\mathbf{2 m}$

According to the general procedure for the indium-mediated allylation, starting from peracetyl arabinose (63.7 mg ; 0.2 mmol); purification by dry-flash chromatography afforded $50 \mathrm{mg}(60 \%)$ of the title compound 2 m . Colorless crystals, $\mathrm{mp} 102-5^{\circ} \mathrm{C}$ (from petroleum ether/ethyl acetate). $\alpha_{\mathrm{D}}+11$ (c $0.2, \mathrm{CHCl}_{3}$). FT-IR (KBr): 3469, 2975, 1834, 1745, 1690, 1372, 1216, 1148, 1055. ${ }^{1} \mathrm{H}$ NMR $\delta: 5.42$ $\left(\mathrm{dd}, J_{1}=1.2, J_{2}=10,1 \mathrm{H}\right), 5.26\left(\mathrm{dd}, J_{1}=1.2, J_{2}=10,1 \mathrm{H}\right), 5.08(\mathrm{t}, \mathrm{J}=2.8,1 \mathrm{H}), 5.00-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.90-4.98$ (m, 2H), 4.26 (d, J=2.8, 2H), $4.02(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.79(\mathrm{~m}, 1 \mathrm{H}), 2,23(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, 2.06 (s, 3H). ${ }^{13} \mathrm{C}$ NMR $\delta: 172.3$ (C), 170.5 (C), 170.2 (C), 169.8 (C), 152.1 (C), 148.6 (C), $90.1\left(\mathrm{CH}_{2}\right)$, $78.8(\mathrm{CH}), 68.7(\mathrm{CH}), 68.6(\mathrm{CH}), 67.9(\mathrm{CH}), 67.3(\mathrm{CH}), 61.4\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.6$ $\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right)$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{12}$: C 48.81, H 5.30; found: C 48.58, H 5.27.
(S)-Tert-butyl

4-((R)-hydroxy ((R)-5-methylene-2-oxo-1,3-dioxolan-4-yl)methyl)-2,2-
dimethyloxazolidine-3-carboxylate 2n (SRR), and (S)-Tert-butyl 4-((S)-hydroxy)((S)-5-methylene-

2-oxo-1,3-dioxolan-4-yl)methyl)-2,2-dimethyloxazolidine-3-carboxylate 2n (SSS)

2n (SRR)

2n (SSS)

According to the general procedure for the indium-mediated allylation, starting from $42 \mathrm{mg}(0.18$ mmol) of the Garner aldehyde ((4S)-tert-butyl-4-formyl-2,2-dimethyloxazolidine-3-carboxylate); purification by dry-flash chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: 30% acetone in petroleum-ether) afforded 49 $\mathrm{mg}(81 \%)$ of the title product as an equimolar mixture of diastereoisomers $\mathbf{2 n}$ (SRR) and 2 n (SSS). Crystallization from 20% acetone in hexanes afforded white crystals which were also a 1:1 diastereoisomeric mixture. The isomers could be separated by rapid flash chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient elution: chloroform/MeOH from 99/1 to 97/3), where $\mathbf{2 n}(S R R)$ is a less polar and $\mathbf{2 n}$ (SSS) is the more polar isomer. Both isomers were submitted to X-ray crystallographic analysis, the results of which are graphically represented on pages S61 and S63.
Physical data for 2n (SRR): White, rhombohedral crystals, mp 180-182 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr): 2924, 2853, 1827, 1689, 1653, 1392, 1372, 1147, 1058, 863, 767. ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO, 340 K) $\delta: 5.61$ (d, J=4.5, 1 H), 5.32 (ddd, $J_{1}=2.4, J_{2}=2.2, J_{3}=1.5,1 \mathrm{H}$), $4.90\left(\mathrm{dd}, J_{1}=3.5, J_{2}=2.2,1 \mathrm{H}\right.$), 4.70 (dd, $J_{1}=3.5, J_{2}=2.4$, 1 H), 4.06 (br. t, J=6.5, 1H), 4.03 (dd, $J_{1}=9.5, J_{2}=1.5,1 \mathrm{H}$), 3.96-3.91 (m, 2H), $1.54(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, 1.41 (s, 9 H). ${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO, 340 K) ס: 151.8 (C), 150.1 (C), $93.8(\mathrm{C}), 89.0\left(\mathrm{CH}_{2}\right), 79.8(\mathrm{CH})$, $70.3(\mathrm{CH}), 63.5\left(\mathrm{CH}_{2}\right), 57.9(\mathrm{CH}), 28.0\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{7}+\mathrm{Na}^{+}\right]: 352.1372$, found for $[\mathrm{M}+\mathrm{Na}]^{+}: 352.1351$. [a] ${ }_{\mathrm{D}}{ }^{20}-37$ (c 1.0, CHCl_{3}). Physical data for 2n (SSS): White, rod-like crystals, mp 114-116 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr): 3467, 2980, 2936, 1835, 1690, 1392, 1373, 1149, 1059, 862, 768. ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO, 343 K) $\delta: 5.95$ (s, 1H), 5.21 (ddd, J $\mathrm{J}_{1}=5.5, J_{2}=3.5$, $\left.J_{3}=2.0,1 \mathrm{H}\right), 4.95-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.09\left(\mathrm{dd}, J_{1}=8.9, J_{2}=1.4,1 \mathrm{H}\right), 3.95\left(\mathrm{ddd}, J_{1}=6.5, J_{2}=1.4, J_{3}=1.0,1 \mathrm{H}\right)$, 3.87 (dd, $\left.J_{1}=8.9, J_{2}=6.5,1 \mathrm{H}\right), 3.76(\mathrm{bs}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(d_{6^{-}}\right.$ DMSO, 343 K) ס: 152.0 (C), 151.5 (C), 150.0 (C), 93.2 (C), $88.7\left(\mathrm{CH}_{2}\right), 80.1$ (C), $79.8(\mathrm{CH}), 70.6$ $(\mathrm{CH}), 62.9\left(\mathrm{CH}_{2}\right), 56.6(\mathrm{CH})$, $27.7\left(\mathrm{CH}_{3}\right)$, $26.8\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right)$.HRMS (ESI): calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{7}+\right.$ $\left.\mathrm{Na}^{+}\right]: 352.1372$, found for $[\mathrm{M}+\mathrm{Na}]^{+}: 352.1357$. Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{7}$: C 54.71, H 6.99, N 4.25; found: C 54.39, H 6.73, N 4.04.

4-(1-Hydroxycyclohexyl)-5-methylene-1,3-dioxolan-2-one 20

According to the general procedure for the indium-mediated allylation, starting from cyclohexanone $(19.6 \mathrm{mg} ; 0.2 \mathrm{mmol}) ;$ purification by dry-flash chromatography afforded 21 mg (52\%) of the 20. Colorless crystals, mp 107-9 ${ }^{\circ} \mathrm{C}$ (from hexanes/ethyl acetate). FT-IR (KBr): 3483, 2985, 2936, 2863, $1798,1686,1345,1159,1049 .{ }^{1} \mathrm{H}$ NMR $\delta: 5.00\left(\mathrm{dd}, J_{1}=1.8, J_{2}=4.0,1 \mathrm{H}\right), 4.84(\mathrm{t}, \mathrm{J}=1.8,1 \mathrm{H}), 4.53$ (dd, $\left.J_{1}=1.6, J_{2}=4.0,1 \mathrm{H}\right), 1.42-1.72(\mathrm{~m}, 10 \mathrm{H}), 1.21-1.28(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 149.9$ (C), $90.0(\mathrm{C}), 84.8$ $\left(\mathrm{CH}_{2}\right), 72.4(\mathrm{CH}), 32.1\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 20.8\left(\mathrm{CH}_{2}\right)$. Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C} 60.59$, H 7.12; found: C 60.50, H 7.11 .
anti-Methyl 2-hydroxy-2-(5-methylene-2-oxo-1,3-dioxolan-4-yl)propanoate 2 p and trans-methyl 5-acetyl-4-methyl-2-oxo-1,3-dioxolane-4-carboxylate 2q

According to the general procedure for the indium-mediated allylation, starting from methyl pyruvate $(18.2 \mathrm{mg} ; 0.18 \mathrm{mmol})$; purification by dry flash chromatography (gradient elution: from 20% to 30% acetone in petroleum-ether) afforded $19 \mathrm{mg}(52 \%)$ of $\mathbf{2 p}$, followed by $3 \mathrm{mg}(8 \%)$ of $\mathbf{2 q}$.
Physical data for 2p: Colorless crystals, mp 93-5 ${ }^{\circ} \mathrm{C}$ (from hexanes/ethyl acetate). FT-IR (KBr): 3481, 2959, 1832, 1740, 1689, 1336, 1267 1141, 1059. ${ }^{1} \mathrm{H}$ NMR $\delta: 5.17$ (m, 1H), 5.00 (dd, $J_{1}=3.4, J_{2}=4.0$, $1 \mathrm{H}), 4.58\left(\mathrm{dd}, J_{1}=1.8, J_{2}=4.0,1 \mathrm{H}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 173.5(\mathrm{C})$, $151.6(\mathrm{C}), 148.9(\mathrm{C}), 90.2\left(\mathrm{CH}_{2}\right), 81.4(\mathrm{CH}), 75.1(\mathrm{C}), 53.8\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{6}+\mathrm{Na}^{+}\right]:$225.0369; found for $[\mathrm{M}+\mathrm{Na}]^{+}: 225.0368$. Physical data for $\mathbf{2 q}$: Colorless oil. FT-IR (film): 2962, 1827, 1741, 1692, 1445, 1273, 1225, 1113, 1078. ${ }^{1} \mathrm{H}$ NMR $\delta: 5.10$ (s, 1H), 3.91 (s, 3H), $2.36(\mathrm{~s}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 201.6$ (C), 168.9 (C), 151.9 (C), 148.9 (C), 85.6 (C), 82.5 (CH), $54\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 302.0550; found: 203.0549.

General procedure for the deprotection of enol carbonates 2 into α, β-dihydroxy ketones 3

Mercury (II) nitrate (118 mg ; 0.364 mmol) was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of compound 2 (0.121 mmol) in dioxane (2 mL) and water (0.6 mL). The reaction mixture was stirred for 5 min , when TLC (eluent: 50\% EtOAc in petroleum-ether) indicated the disappearance of the starting material. Saturated aqueous solution of $\mathrm{KI}(10 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$, the mixture was allowed to reach rt , and was stirred at rt for an additional 5 min . Standard work-up with diethyl ether, followed by purification by dry-flash chromatography, afforded the pure compound 3.

anti-3,4-Dihydroxy-4-phenylbutan-2-one $3 a^{12}$

According to the general procedure for the deprotection of enol carbonates, starting from $\mathbf{2 a}(25 \mathrm{mg}$, 0.12 mmol); after purification by column chromatography (eluent: 50\% EtOAc in hexanes), 14.6 mg (67%) of the title compound 3a was obtained, as a mixture of isomers in a ratio anti:syn=12:1 (the ratio of isomers did not change after crystallization from 5\% EtOAc in hexanes). Physical data for 3a: White crystals, m.p. $106-{ }^{\circ}{ }^{\circ} \mathrm{C}$. FT-IR (KBr): 3417, 3032, 2916, 1712, 1357, 1231, 1101, 1055, 759, 704. ${ }^{1}$ HNMR $\delta: 7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.02-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.46\left(\mathrm{bt}, \mathrm{J}_{1}=4.4,1 \mathrm{H}\right), 3.74(\mathrm{~d}, \mathrm{~J}=4.4,1 \mathrm{H})$, 3.12 (d, J = 4.4, 1H), 1.95 (s, 3H). ${ }^{13} \mathrm{C}$ NMR $\delta: 208.2$ (C), 138.9 (C), 128.6 (CH), 128.2 (CH), 126.2 $(\mathrm{CH}), 81.1(\mathrm{CH}), 74.9(\mathrm{CH}), 27.6\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}+\mathrm{NH}_{4}^{+}\right]$: 198.1130, found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 198.1124$.
anti-3,4-Dihydroxy-4-(4-methoxyphenyl)butan-2-one $3 c^{13}$

According to the general procedure for the deprotection of enol carbonates, starting from $\mathbf{2 c}(43.5 \mathrm{mg}$, 0.18 mmol); after purification by column chromatography (eluent: 50% EtOAc in petroleum-ether), 25 $\mathrm{mg}(64 \%)$ of the title compound 3 c was obtained, as a mixture of diastereoisomers in a ratio: anti:syn=10:1. Physical data for 3c: white crystals, mp 50-3 ${ }^{\circ} \mathrm{C}$ (recrystallized from 5\% EtOAc in hexanes), FT-IR (KBr): 3429, 3004, 2913, 1712, 1514, 1357, 1249, 1178, 1031, 836. ${ }^{1} \mathrm{H}$ NMR ס: 7.32 (d, J=8.8, 2H), $6.90(d, J=8.8,2 H), 4.93(d, J=4.8,1 H), 4.43(d, J=4.8,1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.67$ (bd, J=4.8, 1H), 3.05 (bs, 1H), 2.00 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ס: 208.4 (C), 159.4 (C), 131.0 (C), 127.5 (CH), 113.9 $(\mathrm{CH}), 80.9(\mathrm{CH}), 74.5(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}+\mathrm{NH}_{4}^{+}\right]$: 228.1236, found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 228.1225$.

anti-4-(Benzo[d][1,3]dioxol-5-yl)-3,4-dihydroxybutan-2-one 3d

According to the general procedure for the deprotection of enol carbonates, starting from $\mathbf{2 d} \mathbf{~ (7 2 ~ m g , ~}$ 0.29 mmol); after purification by column chromatography (eluent: $50 \% \mathrm{EtOAc}$ in petroleum-ether), 31.6 mg (49%) of the title compound 3d was obtained, as a mixture of diastereoisomers in a ratio: anti:syn=6.4:1. Physical data for 3d: white crystals, mp 112-5 ${ }^{\circ} \mathrm{C}$, FT-IR (KBr): 3426, 2902, 1713, 1490, 1444, 1358, 1247, 1037, 930. ${ }^{1} \mathrm{H}$ NMR $\delta: 6.92-6.77$ (m, 3H), 5.97 (s, 2H), 4.88 (bt, J=3.9, 1H), $4.40(\mathrm{t}, \mathrm{J}=4.9,1 \mathrm{H}), 3.59(\mathrm{~d}, \mathrm{~J}=4.9,1 \mathrm{H}), 2.93(\mathrm{~d}, \mathrm{~J}=3.9,1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 208.3(\mathrm{C}), 147.9$ (C), $147.5(\mathrm{C}), 133.0(\mathrm{C}), 119.8(\mathrm{CH}), 108.2(\mathrm{CH}), 106.8(\mathrm{CH}), 101.2\left(\mathrm{CH}_{2}\right), 80.8(\mathrm{CH}), 74.7(\mathrm{CH})$, $27.6\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}+\mathrm{Na}^{+}\right]: 247.0582$, found for $[\mathrm{M}+\mathrm{Na}]^{+}: 247.0573$.
anti-3,4-Dihydroxy-4-(4-chlorophenyl)butan-2-one $3 e^{14}$

According to the general procedure for the deprotection of enol carbonates, starting from $\mathbf{2 e}$ ($30 \mathrm{mg}, 0.13 \mathrm{mmol}$); after purification by column chromatography (eluent: 50% EtOAc in petroleumether), 20.1 mg (75%) of the title compound 3 e was obtained, as unseparable mixture of diastereoisomers in a ratio: anti:syn=7.7:1. Physical data for 3 e : white crystals, $\mathrm{mp} 52-4{ }^{\circ} \mathrm{C}$, FT-IR (KBr): 3416, 3032, 2919, 1712, 1358, 1231, 1102, 1056, 759, 705. ${ }^{1} \mathrm{H}$ NMR ס: 7.39-7.29 (m, 4H), 4.96 (bs, 1H), 4.42 (bt, J=4.8, 1H), 3.75 (d, J=4.8, 1H), 3.19 (bs, 1H), 1.98 (s, 3H). ${ }^{13} \mathrm{C}$ NMR $\delta: 207.9$ (C), $137.6(\mathrm{C}), 134.0(\mathrm{C}), 128.7(\mathrm{CH}), 127.6(\mathrm{CH}), 80.8(\mathrm{CH}), 74.3(\mathrm{CH}), 27.7\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Cl}+\mathrm{Na}^{+}\right]: 237.0294$, found for $[\mathrm{M}+\mathrm{Na}]^{+}: 237.0290$. Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{Cl}: \mathrm{C} 55.94$, H 5.13; found: C 55.98, H 5.08.

anti-3,4-Dihydroxydecan-2-one 3i

According to the general procedure for the deprotection of enol carbonates, starting from $\mathbf{2 i}$ (18 mg , 0.08 mmol); after purification by column chromatography (eluent: 50% EtOAc in petroleum-ether), 10 $\mathrm{mg}(67 \%)$ of the title compound 3 i was obtained. Physical data for 3 i : white crystals, $\mathrm{mp} 50-2^{\circ} \mathrm{C}$ (from 5% EtOAc in hexanes), FT-IR (KBr): 3303, 3210, 2926, 2852, 1719, 1361, 1080, 1053. ${ }^{1} \mathrm{H}$ NMR δ : $4.28(\mathrm{t}, \mathrm{J}=5.2,1 \mathrm{H}), 3.88(\mathrm{bs}, 1 \mathrm{H}), 3.51(\mathrm{~d}, \mathrm{~J}=5.2,1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~d}, \mathrm{~J}=7.5,1 \mathrm{H}), 1.53-1.49(\mathrm{~m}$, 2H), 1.28-1.27 (m, 8H), 0.88 (t, J=7.0, 3H). ${ }^{13} \mathrm{C}$ NMR $\delta: 208.0(\mathrm{C}), 80.5(\mathrm{CH}), 72.7(\mathrm{CH}), 31.8\left(\mathrm{CH}_{2}\right)$,
$31.7\left(\mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3}+\mathrm{Na}^{+}\right]: 211.1310$, found for $[\mathrm{M}+\mathrm{Na}]^{+}: 211.1307$.

General procedure for the rearrangement of enol carbonates 2 into cis cyclic carbonates 4

Diisopropylethylamine ($6 \mathrm{mg} ; 8.0 \mu \mathrm{~L} ; 46 \mu \mathrm{~mol}$) was added to a solution of compound 2 (0.083 mmol) in chloroform (1.5 mL). Reaction mixture was stirred at rt , and the progress of the reaction was monitored by TLC (eluent: 40% EtOAc in petroleum-ether; the reactions are usually complete in 1-3 h). The reaction mixture was concentrated at rotavap and the crude product purified by dry-flash chromatography.

cis-4-Acetyl-5-phenyl-1,3-dioxolan-2-one 4a

According to the general procedure for the rearrangement of enol carbonates 2 into cis cyclic carbonates 4, starting from $\mathbf{2 a}(20 \mathrm{mg}$; $97 \mu \mathrm{~mol}$); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded $14.1 \mathrm{mg}(71 \%)$ of the title compound $4 \mathbf{a}$. Physical data for 4 a : white crystals, mp 106-7 ${ }^{\circ} \mathrm{C}$, FT-IR (KBr): 3429, 3047, 2980, 1809, 1721, 1339, 1173, 1074, 768. ${ }^{1} \mathrm{H}$ NMR ס: 7.42-7.40 (m, 3H); 7.26-7.25 (m, 2H); 5.92 (d, J=8.8, 1H); 5.23 (d, J=8.8, 1H); 1.77 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ס: 153.7 (C), 148.5 (C), 131.9 (C), 130.0 (CH), 129.1 (CH), 126.1 (CH), $82.5(\mathrm{CH}), 79.4$ (CH), $27.6\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4}+\mathrm{Na}^{+}\right]:$229.0477, found for [M+Na] : 229.0477.
cis-4-Acetyl-5-(4-methoxyphenyl)-1,3-dioxolan-2-one 4c

According to the general procedure for the rearrangement of enol carbonates 2 into cis cyclic carbonates 4, starting from $2 \mathrm{c}(25 \mathrm{mg} ; 0.106 \mathrm{mmol})$; purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded $14 \mathrm{mg}(56 \%)$ of the title compound $\mathbf{4 c}$. Physical data for $\mathbf{4 c}$: white crystals, mp 130-132 ${ }^{\circ} \mathrm{C}$. IR (KBr): 2974, 2841, 1790, 1726, 1617, 1519, 1340, 1260, 1175, 1173, 835, 767. ${ }^{1} \mathrm{H}$ NMR $\delta: 7.18$ (d, J=9.0, 2H); 6.91 (d, J=9.0, 2H); 5.88 (d, J=8.7, 1H); 5.21 (d, J=8.7, 1H); 3.81 (s, 3H), 1.80 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ס: 201.9 (C), 160.7 (C), 153.7 (C), 127.6 (CH), 123.7 $(\mathrm{C}), 114.5(\mathrm{CH}), 82.6(\mathrm{CH}), 79.4(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}+\right.$ Na^{+}]: 259.0582, found for $[\mathrm{M}+\mathrm{Na}]^{+}: 259.0571$. Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$: C 61.02, H 5.08; found: C 60.50, H 5.08.
cis-4-Acetyl-5-(benzo[d][1,3]dioxol-5-yl)-1,3-dioxolan-2-one 4d

According to the general procedure for the rearrangement of enol carbonates 2 into cis cyclic carbonates 4, starting from 2d ($43 \mathrm{mg} ; 0.172 \mathrm{mmol}$); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 22.7 mg (53\%) of the title compound 4d. Physical data for 4d: white crystals, mp $136-8^{\circ} \mathrm{C}$ (5% EtOAc in hexanes), FT-IR (KBr): 3437, 2908, 1794, 1725, 1502, 1261, 1180, 1075, 812, 767. ${ }^{1} \mathrm{H}$ NMR $\delta: 6.82$ (d, J=8.0, 1H); 6.74 (dd, J $\mathrm{J}_{1}=8.0, J_{2}=2.0,1 \mathrm{H}$); 6.70 (d, J=2.0, 1H); 6.00 (s, 2H); 5.82 (d, J=8.8, 1H); 5.19 (d, J=8.8, 1H); 1.88 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ס: 201.7 (C), 153.5 (C), 149.0 (C), 148.4 (C), $125.4(\mathrm{C}), 120.2(\mathrm{CH}), 108.7(\mathrm{CH}), 106.4(\mathrm{CH}), 101.7\left(\mathrm{CH}_{2}\right), 82.4$ $(\mathrm{CH}), 79.4(\mathrm{CH})$, $27.8\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{6}+\mathrm{NH}_{4}^{+}\right]: 268.0821$, found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 268.0817; Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{6}$: C 57.60, H 4.00; found: C 57.28, H 4.25.

cis-4-Acetyl-5-(4-chlorophenyl)-1,3-dioxolan-2-one 4e

According to the general procedure for the rearrangement of enol carbonates 2 into cis cyclic carbonates 4, starting from $\mathbf{2 e}(20 \mathrm{mg} ; 0.08 \mathrm{mmol})$; purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded $12.6 \mathrm{mg}(63 \%)$ of the title compound $\mathbf{4 e}$. Physical data for 4e: white crystals, mp 102-3 ${ }^{\circ} \mathrm{C}$, FT-IR (KBr): 3438, 3004, 2922, 1793, 1341, 1179, 1075, $814 .{ }^{1} \mathrm{H}$ NMR ס: 7.40 (d, J=8.8, 2H); 7.20 (d, J=8.8, 2H); 5.89 (d, J=9.0, 1H); 5.21 (d, J=9.0, 1H); 1.85 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ס: 201.8 (C), 153.3 (C), 136.2 (C), 130.5 (C), 129.4 (CH), 127.4 (CH), 82.3 (CH), 78.7 (CH), $27.8\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{Cl}+\mathrm{NH}_{4}{ }^{+}\right]: 258.0533$, found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 258.0532$. Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{Cl}$: C 54.88, H 3.74; found: C 54.60, H 3.90.

cis-4-Acetyl-5-hexyl-1,3-dioxolan-2-one 4i

According to the general procedure for the rearrangement of enol carbonates 2 into cis cyclic carbonates 4, starting from $\mathbf{2 i}$ ($17 \mathrm{mg}, 0.08 \mathrm{mmol}$); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 10 mg (59\%) of the title compound $\mathbf{4 i}$, as a colorless oil. Physical data for 4i: FT-IR (KBr): 2956, 2930, 2859, 1812, 1727, 1463, 1363, 1166, 1080. ${ }^{1} \mathrm{H}$ NMR δ : 4.61 ($q, J=6.2,1 H$), $4.47(\mathrm{~d}, \mathrm{~J}=6.2,1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.29(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}$, J=6.8, 3H). ${ }^{13} \mathrm{C}$ NMR $\delta: 204.0(\mathrm{C}), 153.3(\mathrm{C}), 83.0(\mathrm{CH}), 79.1(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 28.6$ $\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}+\mathrm{Na}\right.$]: 237.1103; found for $[\mathrm{M}+\mathrm{Na}]^{+}: 237.1090$.

4-Acetyl-5-((E)-prop-1-en-1-yl)-1,3-dioxolan-2-one - mixture of cis isomer 4j and trans isomer 5j

According to the general procedure for the rearrangement of enol carbonates $\mathbf{2}$ into cis cyclic carbonates 5, starting from 2 j (20 mg ; 0.28 mmol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 10 mg (50\%) of 5 j (trans), followed by 8 mg (40%) of 4 j (cis). Physical data for 5 j : colorless oil, FT-IR (film): 2922, 1804, 1726, 1356, 1174, 1078. ${ }^{1} \mathrm{H}$ NMR δ : 6.06$5.98(\mathrm{~m}, 1 \mathrm{H}), 5.58$ (ddq, $\left.J_{1}=15.0, J_{2}=6.9, J_{3}=1.8,1 \mathrm{H}\right), 5.01$ (bt, J=6.9, 1H), 4.57 (d, J=6.9, 1H), 2.36 (s, 3 H), 1.80 (ddd, $J_{1}=7.0, J_{2}=1.8, J_{3}=0.5,3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $\delta: 202.7$ (C), 153.0 (C), 135.0 (CH), 124.9 (CH), $83.0(\mathrm{CH}), 79.3(\mathrm{CH}), 26.7\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right) . \operatorname{HRMS}(\mathrm{ESI}):$ calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}+\mathrm{NH}_{4}\right]: 188.0923$, found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 188.0919. Physical data for 4 j : colorless oil, FT-IR (film): 2928, 1799, 1723, 1337, $1174,1076 .{ }^{1} \mathrm{H}$ NMR $\delta: 6.06-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.26(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=8.5,1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.78-$
1.77 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ס: 202.4 (C), 153.4 (C), $135.8(\mathrm{CH}), 121.2(\mathrm{CH}), 81.4(\mathrm{CH}), 78.9(\mathrm{CH}), 28.2$ $\left(\mathrm{CH}_{3}\right)$, $17.8\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}+\mathrm{NH}_{4}^{+}\right]$: 188.0923, found for $\left[\mathrm{M}+\mathrm{NH}_{4}^{+}\right]^{+}: 188.0919$.
(E)-4-Acetyl-5-styryl-1,3-dioxolan-2-one - cis isomer 4k and trans isomer 5k

According to the general procedure for the rearrangement of enol carbonates 2 into cis cyclic carbonates 4, starting from $2 k(36 \mathrm{mg} ; 0.129 \mathrm{mmol}$); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded 16.3 mg (45%) of $\mathbf{5 k}$, followed by 12.2 mg (34%) of $\mathbf{4 k}$. Physical data for $\mathbf{4 k}$: white crystals, $\mathrm{mp} 92-4{ }^{\circ} \mathrm{C}$ (from 5% EtOAc in hexanes), FT-IR (KBr): 3060, 3029, 1808, 1730, 1336, 1171, 1082, 1024, 978, 757, 695. ${ }^{1} \mathrm{H}$ NMR $\delta: 7.39-7.32$ (m, 5H), 6.83 (dd, $J_{1}=15.7, J_{2}=1.1,1 \mathrm{H}$), 5.96 (dd, $\left.J_{1}=15.7, J_{2}=7.3,1 \mathrm{H}\right), 5.57-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=9.0,1 \mathrm{H}), 2.27$ (s, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta: 202.5(\mathrm{C}), 153.3(\mathrm{C}), 137.0(\mathrm{CH}), 134.5(\mathrm{C}), 129.3(\mathrm{CH}), 128.8(\mathrm{CH}), 127.1(\mathrm{CH})$, $118.3(\mathrm{CH}), 81.4(\mathrm{CH}), 78.6(\mathrm{CH}), 28.3\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}+\mathrm{K}^{+}\right]: 271.0373$, found for $[\mathrm{M}+\mathrm{K}]^{+}$: 271.0367 . Physical data for $5 \mathbf{k}$: white crystals, mp $115-6{ }^{\circ} \mathrm{C}$ (from 5% EtOAc in hexanes), FT-IR (KBr): 3028, 2923, 1810, 1729, 1358, 1170, 1090, 972, 758, 695. ${ }^{1} \mathrm{H}$ NMR ס: $7.45-$ $7.33(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=15.7,1 \mathrm{H}), 6.20\left(\mathrm{dd}, \mathrm{J}_{1}=15.7, J_{2}=7.4,1 \mathrm{H}\right), 5.26(\mathrm{t}, \mathrm{J}=6.2,1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=6.2$, 1H), 2.41 (s, 3H). ${ }^{13} \mathrm{C}$ NMR $\delta: 202.8$ (C), 153.0 (C), 136.7 (CH), 134.6 (C), 129.3 (CH), 128.9 (CH), $127.1(\mathrm{CH}), 121.9(\mathrm{CH}), 83.0(\mathrm{CH}), 79.2(\mathrm{CH}), 26.8\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}+\mathrm{K}^{+}\right]$: 271.0373, found for $[\mathrm{M}+\mathrm{K}]^{+}$: 271.0365. Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}$: C 67.24, H 5.17; found: C 66.93, H 5.32.

$(1 S, 2 R, 3 R)-1-((4 S, 5 S)-5-a c e t y l-2-o x o-1,3-d i o x o l a n-4-y l) b u t a n e-1,2,3,4$-tetrayl tetraacetate $4 m$

 4m

According to the general procedure for the rearrangement of enol carbonates 2 into cis cyclic carbonates 4 , starting from $2 \mathrm{~m}(10 \mathrm{mg} ; 24 \mu \mathrm{~mol})$; purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded $7.5 \mathrm{mg}(75 \%)$ of the title compound 4 m . Physical data for $\mathbf{4 m}$: yellow oil, FT-IR (film): 3358, 2924, 2853, 2363, 1821, 1746, 1371, 1209, 1134, 1161, 736, $602 .{ }^{1} \mathrm{H}$ NMR $\delta: 5.50-5.46(\mathrm{~m}, 2 \mathrm{H}), 5.13-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~d}, \mathrm{~J}=4.6,1 \mathrm{H}), 4.78(\mathrm{t}, \mathrm{J}=4.6,1 \mathrm{H}), 4.27$ (dd, $J_{1}=13.0, J_{2}=3.0,1 \mathrm{H}$), $4.08\left(\mathrm{dd}, \mathrm{J}_{1}=13.0, \mathrm{~J}_{2}=4.8,1 \mathrm{H}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}$, 3H), 2.08 (s, 3H). ${ }^{13} \mathrm{C}$ NMR $\delta: 203.2$ (C), 170.5 (C), 169.8 (C), 169.7 (C), 169.2 (C), 152.1 (C), 79.5 $(\mathrm{CH}), 76.4(\mathrm{CH}), 69.2(\mathrm{CH}), 68.2(\mathrm{CH}), 67.8(\mathrm{CH}), 61.3\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right)$, $20.6\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{12}+\mathrm{NH}_{4}{ }^{+}\right]$: 436.1455 , found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 436.1449.

General procedure for the rearrangement of enol carbonates $\mathbf{2}$ into trans cyclic carbonates 5

Diisopropylethylamine ($103 \mathrm{mg} ; 140 \mu \mathrm{~L} ; 0.8 \mathrm{mmol}$) was added to a solution of compound 2 (0.16 mmol) in chloroform (1.5 mL). Reaction mixture was stirred at rt , and the progress of the reaction was monitored by TLC (eluent: 40% EtOAc in petroleum-ether; the reactions are usually complete in 45
$\min)$. The reaction mixture was concentrated at rotavap and the crude product purified by dry-flash chromatography.
trans-4-Acetyl-5-(benzo[d][1,3]dioxol-5-yl)-1,3-dioxolan-2-one 5d and 4-(benzo[d][1,3]dioxol-5-yl)-4-hydroxybut-3-en-2-one 6d

5d

6d

According to the general procedure for the rearrangement of enol carbonates 2 into trans cyclic carbonates 5, starting from 2d (40 mg ; 0.16 mmol); purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded $20 \mathrm{mg}(50 \%)$ of the title compound 5 d . When the reaction time was extended to several hours, in addition to $\mathbf{5 d}$, compound $\mathbf{6 d}$ (a less polar spot on TLC) could also be isolated in 20% yield. This compound is described in the literature, ${ }^{15}$ and the copies of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are on pages S112 and S113. Physical data for 5d: white crystals, mp 102-5 ${ }^{\circ} \mathrm{C}$, FT-IR (KBr): 3360, 2924, 1803, 1730, 1659, 1498, 1452, 1256, 1169, 1080, 1036, 767. ${ }^{1} \mathrm{H}$ NMR δ : $6.86-6.83(\mathrm{~m}, 3 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 5.55(\mathrm{~d}, \mathrm{~J}=6.3,1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=6.3,1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta:$ 202.8 (C), $148.9(\mathrm{CH}), 148.7(\mathrm{C}), 129.2(\mathrm{C}), 120.0(\mathrm{CH}), 108.8(\mathrm{CH}), 105.9(\mathrm{CH}), 101.7\left(\mathrm{CH}_{2}\right), 84.8$ $(\mathrm{CH}), 79.4(\mathrm{CH}), 26.9\left(\mathrm{CH}_{3}\right)$; one carbon resonance, corresponding to the quaternary carbon atom from carbonate, was not observed under the recording conditions. HRMS (ESI): calcd. for [$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{6}+$ $\mathrm{NH}_{4}{ }^{+}$]: 268.0821, found for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 268.0810. Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{6}$: $\mathrm{C} 57.60, \mathrm{H} 4.00$; found: C 57.91, H 3.88.
trans-4-Acetyl-5-(4-chlorophenyl)-1,3-dioxolan-2-one 5e

According to the general procedure for the rearrangement of enol carbonates 2 into trans cyclic carbonates 5 , starting from $2 e(20 \mathrm{mg} ; 80 \mu \mathrm{~mol})$; purification by column chromatography (eluent: 50% EtOAc in petroleum-ether) afforded $12 \mathrm{mg}(60 \%)$ of the title compound $\mathbf{5 e}$. Physical data for $\mathbf{5 e}$: white crystals, mp $92-3^{\circ} \mathrm{C}$ (from 5\% EtOAc in hexanes), FT-IR (KBr): 3424, 2920, 1815, 1718, 1164, 1095, 761. ${ }^{1} \mathrm{H}$ NMR ס: 7.43 (d, J=8.3, 2H), 7.34 (d, J=8.3, 2H), 5.66 (d, J=6.5, 1H), $4.69(\mathrm{~d}, \mathrm{~J}=6.5,1 \mathrm{H}), 2.43$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR $\delta: 202.8$ (C), 152.7 (C), 135.8 (C), 134.2 (C), 129.6 (CH), 126.9 (CH), 84.6 (CH), $78.5(\mathrm{CH}), 26.9\left(\mathrm{CH}_{3}\right)$. HRMS (ESI): calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{Cl}+\mathrm{Na}^{+}\right.$]: 263.0087, found for $[\mathrm{M}+\mathrm{Na}]^{+}$: 263.0085. Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{Cl}$: C 54.88, H 3.74; found: C 54.47, H 3.58.

[^0]${ }^{7}$ Mercury: visualization and analysis of crystal structures, Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; Van de Streek, J. J. Appl. Cryst. 2006, 39, 453.
${ }^{8}$ Sheldrick, M. SHELXL-97, Program for crystal structure refinement, University of Goettingen, Germany, 1997.
${ }^{9}$ Alexander, J. U. S. Patent 5466 811, 1995; Chem. Abstr. 1995, 124, 176148x.
${ }^{10}$ Jung, M.; Blum, R.; Gaede, B.; Gisler, M. Heterocycles, 1989, 28, 93
${ }^{11}$ a) Sakamoto, F.; Ikeda, S.; Tsukamoto, G. Chem. Pharm. Bull. 1984, 32, 2241. b) For the explanation of the mechanism of the reaction sequence, see: Fischler, H.-M.; Heine, H.-G.; Hartmen, W. Tetrahedron Lett. 1972, 1701.
${ }^{12}$ a) Markert, M.; Mulzer, M.; Schetter, B., Mahrwald, R. J. Am. Chem. Soc. 2007, 129, 7258; b) Rogozinska, M.; Mlynarski, J. Tetrahedron Lett. 2009, 50, 1639.
${ }^{13}$ In the literature, this compound has not been characterized as a pure anti isomer, but as a mixture of diastereoisomers; therefore its’ spectral data are provided here. See: Aelvoet, K.; Batsanov, A. S.; Blatch, A. J.; Grosjean, C.; Patrick, L. G. F.; Smethurst, C. A.; Whiting, A. Angew. Chem. Int. Ed. 2008, 47, 768.
${ }^{14}$ Schetter, B.; Stosiek, C.; Ziemer, B.; Mahrwald, R. Appl. Organometal. Chem. 2007, 21, 139.
${ }^{15}$ a) M. Julia, M.; Jassonneix, C. B. Bull. Soc. Chim. Fr. 1975, 751; b) Mors, W.; Gottliee, O. R.; Djerassi, C. J. Am. Chem. Soc. 1957, 79, 4507.

PULSE SEQUENCE
Relax. delay arrayed 1st pulse arrayed
2nd pulse 90.0 degrees
Width 4600.0 Hz
Arrayed repetitions OBSERVE $\mathrm{H} 1,199.9710883 \mathrm{MHz}$ DATA PROCESSING \quad Line broadening 0.2 Hz Line broadening 0.2 FT size 16384 minute

1H NMR

13C NMR

======== CPDPRG2
NUC2
PCPD2
${ }_{\text {PL2 }}$ PL12
PL12
PL13
PL2W
PL2W
PL12W
PL12W
PL13W
PLO2
SFO2
SI
SE
SF
SF
WDW
SSB
SSB
LB
GB
PC
waltz16
80.00 usec
80.00 use
1.20 dB
18.40 dB
18.40 dB
20.76952171 dB
20.76952171 W
0.39575511 W
0.39575511 W
500.2618940 MHz
500.2618940
32768
125.7904923 MHz

EM
0
1.50 Hz
1.40
 Amblent temperat
File: hmbco3brh
GEMINI-200 "nmr" GEMINI-200 "ninr
PULSE SEQUENCE
PULSE SEQUENCE
Relax. delay arrayed
Relax. delay array
lst pulse arrayed
2nd pulse 90.0 degrees
Acq time 1.388 sec
Width 4600.0 Hz
Acq. time 1.388 sec
Width 4600.0 Hz
Arrayed repetitions
OBSERVE H1, 199.9710940 MHz OBSERVE H1,
DATA PROCESSING
DATA PROCESSING
Line broadening 0.2 Hz
FT size 16384
Total time 1 minute

1H NMR

2.00
5.28

WALTZ-16 mod on DATA PROCESSING Line broadening 1.5 Hz size 32768 Total time 22 minutes

PULSE SEQUENCE
Relax. delay arrayed
Rst pulse arrayed
2nd pulse 90.0 degrees
Acq. time 1.351 sec
Width 4600.0 Hz
OBSERVE H1, 199.9710962 MHz
DATA PROCESSING
Line broadenting 0.2 Hz

2a
FT size 16384

1H NMR
Total time 20 nimutes

2b syn

7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	ppm
$\left\{\begin{array}{c} 0 \\ 0 \\ \text { cin } \\ \hline \end{array}\right.$	Nol				$\left(\begin{array}{c} 8 \\ 0 \\ 0 \end{array}\right)$		$\left\|\begin{array}{c} 0 \\ \mathbf{c} \\ \mathbf{m} \end{array}\right\|$								

$M B-71$

Relax, delay arrayed 1st pulse arrayed
and pulse 90.0 degree and pulse 90.0 degrees
Width 4600.0 Hz
Arrayed repetitions
Arrayed repetitions
OBSERVE H1, 199.9710945 MHz DATA PROCESSING
Line broadening 0.2 Hz FT size 16384
FT size 16384
Total time 1 minute

1 H NMR

$$
4.144_{0.70} 0.5715 .09
$$

$3 \quad$| 1 |
| ---: |
| 1.66 |

PULSE SEQUENCE: apt ist pulse arrayed
2nd pulse 122.7 degrees
Acq , time 2.000 sec Width 15000.0 Hz
Arrayed repetitions
OBSERVE C13, 50.2827812 MHz DECOUPLE H1, 199.9712807 MHZ Power 0 dB
on during acquisition
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.5 Hz
FT size 65536 .
Total time 19 minutes

2 c

	$\begin{aligned} & 0 \\ & \underset{\sim}{\circ} \\ & \stackrel{0}{7} \end{aligned}$	8 8 d -1	$\begin{aligned} & \text { or m } \\ & \text { min } \\ & \infty 0 \\ & 00 \\ & 710 \end{aligned}$	$\begin{aligned} & m \\ & m \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \dot{\circ} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{\vec{a}} \end{aligned}$

NMME	
	EXPNO
	Procno
	Date
	Time
	INSTRUIM
	PROBGD
PULEROG	
	TD
SOLVENT	
	NS
	DS
	SWH
	FIDRES
	AQ
	RG
	DW
	DE
	TE
	DI
	D11
	TDO


```
7.5




2 e
1st pulse arrayed
2nd pulse 90.0 degrees
Aca. time 1.395 sec
Arrayed repetitions
OBSERVE H1, 199.9710956 MHZ
DATA PROCESSING
Line broadening 0.2 Hz
FT size 16384
Total time 16 minutes

\section*{1H NMR}



MB-154
Solvent: cdcl3 Ambient temperature EMINI-200 " nin r
Relax. delay arrayed 1 st pulse arrayed
2nd pulse 122.7 degrees Acq. time 2.000 sec
Width 15000.0 Hz
Arrayed repetitions
Arrayed repetitions
OBSERVE C13, 50.2827794 MHz
DECOUPLE \(H 1,199.9712807 \mathrm{MHZ}\)
Power 0 dB
on during acquisition
on during acquisitio
WALTZ-16 modulat
Line broadening 1.0 Hz
FT size 65536
Total time 13.5 hours

13 CNR



```

운
莫
菅
O-

```


NAME
EXPNO
EROCNO
Date-
TIMe
INSTRUM
PROBHD
RULPROG
TT
SOLVENT
NS
DE
SWH
FIDRES
AQ
RG
DW
DE
TE
DI
DII
TDO

20100330
14.05
14.05
spect
5. mm BEO BB-IH
zgpg 30
32768 32758
CDCl 11
4
104
29761.904
0.908261
0.5505524
16.800
6. 50
2.00000000
0.03000000
\(\begin{array}{lr} \\ \text { NUCI } & \text { CHANNEL } \mathrm{fI} \text { = } \\ \text { NUC } \\ \text { PI } & 13 \mathrm{C} \\ \text { PII } & 11.50 \\ \text { PLIW } & 32.22848892\end{array}\)
\(\qquad\)
CPDPRG2
\[
\begin{aligned}
& \text { Nue2 } \\
& \text { pepno }
\end{aligned}
\]

PCPD2
\(\mathrm{PLL}_{2}\)
PLII
ELIS
EL2W
ELI2W
ELI 3 W
SEO2
SI
SE
SE
WDW
SSB
SSB
LB
GB
GB
DC



1H NMR \(\|\|\)


कूल刀口 |l|l




\(2 \mathrm{~g}-\mathrm{syn}\)



2 h
PULSE SEQUENCE
Relax. delay arrayed
1st pulse arrayed
1st pulse arrayed
2nd pulse 90.0 degrees
Acq. time 1.391 sec
Width \(4600,0 \mathrm{~Hz}\)
Arrayed repetitions
Arrayed repetitions
OBSERVE H1, 199.9710956 MHZ
DATA PROCESSING
Line broadening 0.2 Hz
Line broadening 0.2
Total time 2 minutes


PULSE SEQUENCE: apt Relax. delay arrayed 1st pulse arrayed
2nd puise 122.7 degrees
Acq. time 2.000 sec
Width 15000.0 Hz
Arrayed repetitions
OBSERVE C13, 50.2827798 MHz OBSERVE C13, 50.2827798 MHZ
OECOUPLE H1,
199.9712807 MHZ Power 0 dB WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz FT size 65536 Total time 54 minutes

\section*{13C NMR}



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 7. & \multirow{3}{*}{6.5} & \multirow{3}{*}{6.0} & \multirow{3}{*}{5.5} & \multirow[t]{3}{*}{} & 1. & 1 & 1 & 1 & 1 & 1 & T & 1. & 1 & \(\cdots\) \\
\hline \multirow[t]{2}{*}{7.0} & & & & & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & ppm \\
\hline & & & & & 읃 & & & & ¢ & & & \[
\left|\begin{array}{c}
\mathbf{u} \\
\mathrm{m}
\end{array}\right|
\] & & \\
\hline
\end{tabular}

20100825
20100825
13.01
5 mun fle spect

320
cocil
4251.701 H2
0.129752 Hz
3.8535664 sec
117. 600 usec
6.50 user
2.000000000 sec

CAANNELI 11 \(\qquad\)
.35 4sec
27.57956 .00 dB \(27-37956.238 \mathrm{~W}\)
500.2617803 MHz
\(500-2600084 \mathrm{MHz}\)
.20 Hz
1.00



\begin{tabular}{lr} 
EXPNO & 2 \\
PROCNO & 1 \\
Date & 20100825 \\
TIME & 13.10 \\
INSTRUM & Spect \\
PROBHD & 5 mm \\
PULROROG & BB-1H \\
TD & \(2 g p g 30\) \\
SOLVENT & 32768 \\
NS & CDC 13
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CPDRRG2 & walez16 & \\
\hline NUC? & 1 H & \\
\hline PCPD2 & 80.00 & usec \\
\hline PL2 & 1.20 & dB \\
\hline PLI 12 & 18.40 & dB \\
\hline PL13 & 18,40 & dB \\
\hline PL2W & 20.76952171 & W \\
\hline PL12W & 0.39575511 & W \\
\hline PLI3W & 0.39575511 & W \\
\hline SFO2 & 500.2617804 & MHz \\
\hline SI & 32768 & \\
\hline SE & 125.7904833 & MHz \\
\hline WDW & EM & \\
\hline SSB & 0 & \\
\hline 1.8 & 1.50 & Hz \\
\hline GB & 0 & \\
\hline PC & 1.40 & \\
\hline
\end{tabular}

\(2 i\)




\[
\begin{aligned}
& \text { TLme } \\
& \text { INSTRUM }
\end{aligned}
\]
\[
\begin{aligned}
& \text { सNSTRUMM } \\
& \text { PROBHD }
\end{aligned}
\]
\[
\begin{aligned}
& \text { PROBHD } \\
& \text { PULPRROG }
\end{aligned}
\]
PULPROG
\[
\begin{aligned}
& \text { TD } \\
& \text { SOLVENT }
\end{aligned}
\]
\[
\begin{aligned}
& \text { NS } \\
& \text { DS }
\end{aligned}
\]
\[
\begin{aligned}
& \text { DS } \\
& \text { SWH }
\end{aligned}
\]
\[
\begin{aligned}
& \text { SWH } \\
& \text { FIDRES } \\
& \text { RQ } \\
& \text { RG }
\end{aligned}
\]

\[
\begin{array}{ll}
\text { ELi } & 0.00 \mathrm{~dB} \\
\text { PLIW } & 27.37956238 \mathrm{~W}
\end{array}
\]
\[
\begin{array}{ll}
\text { PL1W } & 27.37956238 \\
\text { SEO1 } & 500.2618975 \\
\hline
\end{array}
\]
\[
\begin{array}{lr}
\text { SEO1 } & 500.2618975 \\
\text { SI } & 32768
\end{array}
\]
\[
\begin{array}{lr}
\text { SI } & 32768 \\
\text { SE } & \text { SOW } \\
\text { WOO 2600165 } \\
\text { FM }
\end{array}
\]
\[
\begin{array}{lr}
\text { SE } & \text { S00 } 2.600165 \mathrm{M} \\
\text { WDW } & \text { EM } \\
\text { SSB }
\end{array}
\]
\[
0.20 \mathrm{~Hz}
\]
\[
1.00
\]


2k







PULSE SEQUENCE

Relax, delay arrayed
list pulse arrayed
nd pulse 90.0 deg gees
Act. time 1.395 se
Width 4600.0 Hz
Width 4600.0 Hz
Arrayed repetitions
OBSERVE HI 199.910962 MHz
OBSERVE HI, 199.910962 MHz
DATA PROCESSING
Line broadening 0.
FT size 16389
Total time 20 minutes

1H NMR


21






MB-148-1
Solvent: cdcl3
Amblent temperature
GEMINI-200 "nmr"
PULSE SEQUENCE: apt
Relax. delay arrayed
1st pulse arrayed
2nd pulse 122.7 degrees
Aca. time 2.000 se
Width 15000.0 Hz
Arrayed repetitions OBSERVE C13, 50.2827789 MHZ DECOUPLE \(\mathrm{HI}, 199.9712807 \mathrm{MHz}\)
Power 0 dB
on during acquisition
on during acquisitio
WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz FT size 65536
Total time 13.7 hours
Total time 13.7 hours

\section*{13C NMR}


PULSE SEQUENGE
Relax. delay arrayed
1st pulse arrayed
Aca time 1.391 sec
Width 4600.0 Hz
Arrayed repetitions
OBSERVE H1, 199.9710878 MHz
DATA PROCESSING Line broadening 0.2 Hz
Line broadening 0.2
FT size 16384
Total time 1 minute

\section*{1H NMR}

S57

\begin{tabular}{llllllllllllllllllllll}
170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & ppm
\end{tabular}




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0.5 & ppm \\
\hline  & & - & & \[
\underset{\mathrm{A}}{\mathrm{~A}}
\] & & & & &  & & & & & \\
\hline
\end{tabular}



PULSE SEQUENCE
Relax. delay arrayed
ist pulse arrayed
2nd pulse 90.0 degrees
Acq. time 1.391 sec
Width 1600.0 Hz
Arrayed repetitions
OBSERVE H1, 199.9710951 MHz
DATA PROCESSING
Line broaden
FT size 16384
Total time 1 minute
1H NMR


20


1
Ana


Relax. delay arrayed ist pulse arrayed
2nd pulse 73.6 degrees
Acg, time 1.067 sec
Arrayed repetitions OBSERVE C13, \(\quad 50.2827782 \mathrm{MHz}\)


20
DECOUPLE \(\mathrm{H} 1,199.9712807 \mathrm{MHz}\)
Power 0 dB
cont inuousiy on
WALTZ-16 modulated bATA broadening 1.5 H FT size 32768 Total time 20 minutes

PULSE SEQUENCE
    Relax. delay arrayed
    1st pulse arrayed
2nd pulse 90.0 degrees
    Acq. time 1.781 sec
    Width 4600.0 Hz
    Arrayed repetitions
Arrayed repetitions
OBSERVE H1, 199.9710934 MHz
DATA PROCESSING 0.2 Hz
Total time 2 minutes

1H NMR


FT size 16384 ing 0.2
Total time 2 minutes

PULSE SEQUENCE
Relax. delay arrayed
1st pulse arrayed
2nd pulse 73.6 degrees
Acq, time 1.067 s
Arrayed repetitions
OBSERVE C13, 50.2827782 MHz
DECOUPLE H1, 199.9712807 MHZ
Power 0 dB
continuous iy on
WALTZ-16 modulat
Line broadening 1.5 Hz
T size 32768
rotal time 2.5 hours

\section*{13C NMR}

            1st pulse arrayed
            2nd pulse go.0 degrees
            aca time 1.0 degre
    Width 4600.0 Hz
Arrayed repetitions
OBSERVE H1, 199.9710945 Mt
OBSERVE \(\mathrm{H1}\), 199.97109
DATA PROCESSING
Line broadening 0.2 Hz
Line broadening 0.2
ET size 16384
Total time 2 minutes

(

1.96
4.0
3.
3.
2.5
2.0
pp
.57


NAME
EXPNO EXPNO Date Time
INSTRUM
\[
\begin{aligned}
& \text { INSTRUM } \\
& \text { PROBHD } \quad 5 \mathrm{~mm} \text { BRO BE-11 } \\
& \text { PR }
\end{aligned}
\]
\[
\begin{aligned}
& \text { INSTRUM } \\
& \text { PROBHD } \quad 5 \mathrm{~mm}
\end{aligned}
\]
TD
\[
\begin{aligned}
& \text { SoL } \\
& \text { NS } \\
& \text { DS }
\end{aligned}
\]
\[
\begin{aligned}
& \text { SOLVEN } \\
& \text { NS } \\
& \text { DS } \\
& \text { SWH } \\
& \text { EIDRES }
\end{aligned}
\]
\[
\begin{array}{r}
\text { noesyph } \\
1024 \\
\operatorname{cDC1}
\end{array}
\]
            CDC1
8
\[
\begin{aligned}
& \text { SWH } \\
& \text { EIDRES } \\
& \text { AQ } \\
& \text { RG }
\end{aligned}
\]
                \(4325,259 \mathrm{~Hz}\)
                    165 Hz
4. 223886 Hz
                                    -. 1184244 5e
                            115,600 usec
                            115.600 usec
6:50 usec
                            6.50 use
298.0 K
                            0.00020370 sec
                            2. 00000000 sec
                            2.00000000 sec
1.00000000 sec
                            1.00000000 sec

\begin{tabular}{ll} 
PLIW & 0.00 dB \\
SEO1 & 27.37956238 W
\end{tabular}
    \(\begin{array}{ll} & 27.37956238 \text { W } \\ \text { DO } & 500.2618139 \mathrm{MHz}\end{array}\)
    \(\begin{array}{lr}\text { TDO } & \frac{1}{256} \\ \text { SORES } & 500.2518\end{array}\)
    FO1 \(\quad 500.2518 \mathrm{MHz}\)
            16.895561 Hz
        States-Tppit \(\begin{array}{r}8.646\end{array}\)
        States-TPQT
        \(500-2600062 \mathrm{MHz}\)
            QSINE
                                0.00 Hz
                                0.0
        512
        states-TPP1
            QSINE
                            \(0.00 \cdot \mathrm{~Hz}\)

PULSE SEQUENCE
    Relax. delay arrayed
    lst pulse arrayed
2 nd pulse 73.6 degrees
    Aca. time 1.067 sec
    Widith 15000.0 Hz
    Arrayed repetitions
    Arrayed repetitions
OBSERVE C13, 50.2827764 MHz
    DECOUPLE H1, 199.971280? MHZ
    Power 0 dB
    cont inuously on
    WALTZ-16 modulat
    WALTZ-16 modulated
DATA PROCESSING
Line broadening 1.5 Hz
    Line broadening 1.5 Hz
FT size 32768
    Total time 13.8 hours

\({ }^{2 q}\) FT size 32768 Total time 13.8 hours

DATA PROCESSING
Line broadening 0.2 Hz
Line broadening 0.2
FT size 16384
Total time 1 ininute

1 H NMR

Solvent: cdcl3
Ambient temperature GEMINI-200 " \(\mathrm{nmr}^{2}\)
PULSE SEQUENCE: apt
Relax. delay arrayed
1st pulse arrayed
2nd pulse 122.7 degrees Aca time 2.000 s
Arrayed repetition
Arrayed repet 50.2827794 MHz DECOUPLE H1, 199.9712807 MHZ
Power 0 dB
on during acquisition WALTZ-16 modulate
Line broadening 1.5 Hz
T size 65536
Total time 86 minutes

13C NMR

\(3 a\)
13C NMR



\(M B-141-1\)
Solvent: caci3
Ambient temperature
GEMINI-200 "nmr"
PULSE SEQUENCE
Relax. delay arrayed
1 st pulse arrayed
2nd pulse 90.0 degrees
Acq time 1.388 sec
Width 4600.0 Hz
OBSERVE H1, 199.9710934 MHz
DATA PROCESSING
Line broadening 0.2 Hz
FT size 16384
Total time 10 minutes


1H NMR



\[
\begin{aligned}
& \text { Relax. delay arrayed } \\
& \text { 1st pulse arrayed } \\
& \text { 2nd pulse } 122.7 \text { degrees } \\
& \text { Ach. time } 2.000 \mathrm{sec} \\
& \text { Width } 15000.0 \mathrm{~Hz} \\
& \text { Arrayed repetitions } \\
& \begin{array}{l}
\text { Arrayed repetitions } \\
\text { OBSERVE C13, } 50.2827798 \mathrm{MHz}
\end{array} \\
& \text { DECOUPLE H1, } 199.9712807 \mathrm{MHZ} \\
& \begin{array}{l}
\text { Power } 0 \text { dB } \\
\text { on during acquisition }
\end{array} \\
& \text { WALTZ-16 modulated } \\
& \text { DATA PROCESSING } \\
& \text { Line broadening } 1.0 \mathrm{~Hz} \\
& \text { Total time } 49 \text { minutes } \\
& \text { 13C NMR }
\end{aligned}
\]
pulse sequence
Relax. delay arrayed Relax. delay array 2nd pulse 90.0 degrees Acq. time 1.781 sec Width 4600.0 Hz Arrayed repetitions OBSERVE H1, 199.9740951 MHZ DATA PROCESSING
Line broadening 0.2 Hz FT size 16384
Total time 5 minutes

1H NMR
 Total time 5 minutes


MB-104-2
Solvent: cdel3 Ambient temperature GEMINI-200 "nmi
PULSE SEqUENCE Relax. delay arrayed 1st pulse arrayed 2nd pulse 73.6 degrees Acq. time 1.067 sec Width 15000.0 Hz Arrayed repetitions OBSERVE C13, 50.2827782 MHZ OECOUPLE H1, 199.9712807 MHZ Power 0 dB
continuous ly on DATA PROCESSING
Line broadening 1.5 Hz FT size 32768
Total time 31 minutes

\section*{13 CNM}


3d
PULSE SEQUENCE
PULSE SEQUENCE
Relax. deldy arrayed
1st pulse drrayed
    1st pulse drrayed
2nd pulse 90.0 degrees
    2nd pulse 90.0 degr
    Acq. time 1.391 sec
Width 4600 or
    Arrayed
Arrayed repetitions
OBSERVE H1 199.9710951 MHZ
DATA PROCESSING 0.2 Hz
Line broaddning 0.2 H
Total time 2 minutes
1 H NMR


3 e

ist pulse arrayed
\[
\begin{aligned}
& \text { 1st pulse arrayed } \\
& \text { 2nd pulse } 122.7 \text { degrees }
\end{aligned}
\]
\[
\text { Acq. tlme } 2.000 \text { se }
\]
\[
\begin{aligned}
& \text { Width } 15000.0 \mathrm{~Hz} \\
& \text { Arraved renetitio }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Arrayed repetitions } \\
& \text { OBSERVE G13, } 50.2827794 \mathrm{MHz}
\end{aligned}
\]
\[
\text { DECOUPLE H1, } 199.9712807 \mathrm{MHZ}
\]
Power o dB
on during acquisition
WALTZ-16 modulated
Line broadening 1.5 Hz
FT size 65536
Total time 14.0 hours
13C NMR



1H NMR
\[
\begin{aligned}
& \text { NAME: } \\
& \begin{array}{l}
\text { EXPNC } \\
\text { PROCNO }
\end{array} \\
& \text { Date - } \\
& \text { TIMSTRUM } \\
& \begin{array}{rr}
20100802 \\
\text { INSTRUM } & 12.21
\end{array} \\
& \text { EROR4D } 5 \text { mims BBO spect } \\
& \text { POLPROG } \\
& \text { TOLVENT } \\
& \begin{array}{l}
\text { NS } \\
\text { DS }
\end{array} \\
& \text { SWH } \\
& \begin{array}{l} 
\\
\text { SWH } \\
\text { FIDRES } \\
1370.629 \mathrm{H}_{2}
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& .7487092 \text { sec } \\
& \text { 114. } 400 \text { usec } \\
& \begin{array}{r}
6.50 \mathrm{usec} \\
298.0 \mathrm{~K}
\end{array} \\
& \text { 2.00000000 sec } \\
& \text { CHANMEL } \\
& \mathrm{I} \\
& 9.35 \text { usec } \\
& 27.37956238 \mathrm{~dB} \\
& 500.2618233 \mathrm{MHz} \\
& 502768 \\
& 500.2600126 \mathrm{MHz} \\
& \text { EM } \\
& 0.20 \mathrm{~Hz} \\
& 1.00
\end{aligned}
\]

\(3 i\)


1H NMR


NAME
EXFNO EROCNO Date Time 20100708 INSTRUM \(\quad \$ 1.16\) EROBHD 5 mm BRO spect PULPROG NS
OS
SWH SWH IDRE \(A Q\)
\(R G\) RG
\(D W\)
\(D E\)
TE TE T1

NuCl RLI \(\quad\) प. 35 usec PLIW -27.37956238 w \(\begin{array}{ll}\text { SFO1 } \\ \text { S1 } & -500.2629095 \\ 32768\end{array}\) SF \(\quad 500.2600122 \mathrm{MHz}\) WDA
SSB
LB GB
PC PC


4a

NOESY



Amblent temperature
GEMINI-200 "nMr"
PULSE SEQUENCE
Relax. delay arrayed
Ist pulse arrayed
2nd pulse 90.0 degrees
ACq. time 1.395 s
Width 4600.0 Hz
Arrayed repetitions
OBSERVE H1, 199.9710945 MHz
DATA PROCESSING
Line broadening 0.2 Hz
FT size 16384
Totai time 1 minute


1H NMR


\begin{tabular}{|c|c|}
\hline m下mのにmim NONEMMOR ComNN NTHO &  \\
\hline  &  \\
\hline  & \(V\) \\
\hline
\end{tabular}

1H NMR











NOESY

4391.101 Hz
4.288184 Hz 4.288184 Hz
0.1166495 sec 0.1166495
128
113.867
113.867 usec 298.0 K 0,00010136 sec 2. 000000000 sec 1,00000000 sec 0.00022775 sec
\begin{tabular}{|c|c|c|}
\hline NUCL & 1 H & \\
\hline P1 & 9.35 & usec \\
\hline PLIL & 0.00 & d \\
\hline PLIW & 27.37956238 & \\
\hline SFOL & 500.2618239 & MHz \\
\hline NDO & 1 & \\
\hline TD & 256 & \\
\hline S501 & 500.2618 & MHz \\
\hline FTDRES & 17.152727 & \\
\hline SW & 8,778 & ppres \\
\hline EnMODE & Stakes-TRPI & \\
\hline SI & 517 & \\
\hline SE & 500,2600064 & MHz \\
\hline WLW & QSIME & \\
\hline SSE & 2 & \\
\hline LB & 0.00 & Hz \\
\hline GB & 0 & \\
\hline PC & 1.00 & \\
\hline 51 & 512 & \\
\hline MO2 & States-TPPI & \\
\hline SF & 500.2600068 & MHz \\
\hline WDF & QSINE & \\
\hline SSE & 2 & \\
\hline LE & 0.00 & \(\mathrm{Hz}_{2}\) \\
\hline GB & & \\
\hline
\end{tabular}

\(M B-116-3-1\)

PULSE SEQUENCE: apt
PULSE SEQUENCE: aray
Relax. delay arraye
ist pulse arrayed
1st puise arrayed
2nd pulse 122.7 degrees
Acq, time 2.000 sec
Width 15000.0 Hz
Arrayed repetitions OBSERVE C13, 50.2827785 MHZ DECOUPLE H1, 199.9712807 MHZ Power 0 dB
on during acquisition WALTZ-16 modulated
Line broadening 1.0 Hz FT size 65536
Total time 21.4 hours
```

13C NMR

```




NAME
NFME
EXFNG
PROCNK
Date
Time-
INSTRIM
PROBHD
PWLPROG
TD
SOLVENT
NS
DS
SWH
FTDRES
AQ
RG
DW
DE
TE
DQ
D1
D
TNQ

MB-117-E2
20101015
29201415
13.56
Spect
\(\begin{array}{r}\text { noesyph } \\ 1024 \\ \hline 1024\end{array}\)
CDCI \(\frac{13}{6}\)
\(4360,455 \mathrm{~Hz}\)
4. 258267 Hz

14:1174687 sec
174. 667 used
6.50 usec
298.0 K
0.00010276 sec
2.000000000 sec
\(1,00000000 \mathrm{sec}\)

1,00000000
0.00022935
sec
\(\qquad\) CHANMEL f
1 H
9.35 0.379 .00 dB 27:37956238 W
\(\qquad\)
30 D .2618 MHz
22.476713 Hz 8. 716 ppm States-TPR1
300.2600067 MHz
\[
0.00^{2} \mathrm{~Hz}
\]
\[
1.00
\]
states-TRPI
500.2600086 MHz

QSINE
0.00 Hz
4.0
4.5
6.0


4j




```

MB-145-cis

```
\[
\begin{aligned}
& \text { GEMINI-200 "nmp } \\
& \text { DUL SF SFOUFNCF }
\end{aligned}
\]
\[
\begin{aligned}
& \text { PULSE SEQUENCE } \\
& \text { Relax, delay afrayed } \\
& \text { 1st pulse arrayed }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 1st pulse arraled } \\
& \text { 2nd pulse 90.0 degrees }
\end{aligned}
\]
\[
\text { Aca. time } 1.39 \mathrm{sec}
\]
\[
\begin{aligned}
& \text { Acq. time } 1.39 I^{1} \\
& \text { Width } 4600.0 \mathrm{HE}
\end{aligned}
\]
\[
\begin{aligned}
& \text { Width } 4600.0 \text { HE } \\
& \text { Arrayed repetiEions }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Arrayed repetikions } \\
& \text { OBSERVE H1, } 199.9710956 \mathrm{MHz}
\end{aligned}
\]
\[
\begin{aligned}
& \text { DATA PROCESSING } \\
& \text { Line broadening } 0.2 \mathrm{~Hz}
\end{aligned}
\]

\[
\begin{aligned}
& \text { FT size } 16384 \\
& \text { Total time } 5 \text { miputes }
\end{aligned}
\]

1H NMR



PULSE SEQUENCE: apt
Relax. detay arrayed
    1 t pulse arrayed
    \(15 t\) pulse arrayed
2nd pulse 122.7 degrees
    Acq time 2.000 sec
    Width 15000.0 Hz
    Arrayed repetitions
    OBSERVE C13, 50.2827789 MHZ
    DECOUPLE \({ }_{0} \mathrm{HI}^{2}, 199.9712807 \mathrm{MHZ}\)
    on during acquisition
    WALTZ-16 modulated
DATA PROCESSING
FT size 65536
Total time 13.7 hours


4k

\[
\begin{aligned}
& \text { Relax. delay arrayed } \\
& \text { 1st pulse arrayed } \\
& \text { 2nd pulse } 90.0 \text { degrees }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 1st pulse arrayed } \\
& \text { 2nd pulse } 90.0 \text { degrees } \\
& \text { Acq. time } 1.391 \text { sec }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Acq. t1me } 1.391 \text { sec } \\
& \text { Width } 4600.0 \mathrm{~Hz}
\end{aligned}
\]
\[
\begin{aligned}
& \text { Width } 4600.0 \mathrm{~Hz} \\
& \text { Arrayed repetytions }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Arrayed repetitions } \\
& \text { OBSERVE H1, } 199.9710956 \mathrm{MHz} \\
& \text { DATA PROCESSING }
\end{aligned}
\]
\[
\begin{aligned}
& \text { DATA PROCESSING } \\
& \text { Line broadening o. } 2 \mathrm{~Hz} \\
& \text { ET size } 16384
\end{aligned}
\]
\[
\text { Total time } 5 \text { minutes }
\]


5d

1 H NMR
PULSE SEQUENCE
    Relax, delay arrayed
    1st pulse arrayed
    2nd pulse 73.6 degrees
    2nd pulse 73.6 degre
    Widith 15000.0 Hz
    Arrayed repetitions
    OBSERVE C13, 50.2827773 MHz
    DECOUPLE H1, 199.9712807 MHz
    Power 0 dB
    continuousty on
    WALTZ-16 modulated
    WATA PROCESSING
    Line broadenting 1.5 Hz
    FT size 32768
Total time 15.1 hours
mom

5d

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 220 & 200 & 180 & 160 & 140 & & & & & & \\
\hline & 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 \\
\hline
\end{tabular}



电
II II il i1
\(\qquad\)

\section*{}小|||||||||||




1H NMR

S108
\[
\begin{aligned}
& \text { ID } \\
& \text { SOLVENT }
\end{aligned}
\]

(EDCI

NS
DS
SWH

FIDRES
\begin{tabular}{l}
\(F 2 D\) \\
\(A Q\) \\
\hline
\end{tabular}
4376.629
0.132381 3.7487092

256
114.400
6.50 use
-298.0 K
2.120000000 sec

CHANNEIV FI
\(1=\)
WUCI
E1
PIT
\(\begin{array}{ll} & 9.35 \mathrm{use} \\ \text { ELIW } & 0.00 \mathrm{~dB} \\ & 27.3795238 \mathrm{dm}\end{array}\) \(\begin{array}{lr}\text { SFO } & 27.37956238 \mathrm{~W} \\ \text { S1 } & 500.2618329 \mathrm{MHz} \\ \text { S1 } & 32768\end{array}\)
\(\begin{array}{ll}\mathrm{SF} & 500.2600097 \mathrm{MH}\end{array}\)
WOW
SSB
3SB
LB
C8
LB
G8
F
GE


5j



PULSE SEQUENCE

Relax. delay arrayed
ist pulse arrayed
2nd pulse 90.0 degrees
Acq. time 1.391 se
Arrayed repetitions
OBSERVE H1, 199.9710962 MHz
DATA PROCESSING
Line broadening 0.2 Hz
FT size 16384
Total time 5 minutes

1 H NMR




```


[^0]: ${ }^{1}$ For description of the technique of dry-flash chromatography, see: a) Harwood, L. M. Aldrichimica Acta 1985, 18, 25; b) Vogel's Textbook of Practical Organic Chemistry, Longman Scientific\&Technical, $5^{\text {th }}$ edition, London, 1989, p. 220; c) An account which includes some improvements of the separation technique: Pedersen, D. S.; Rosenbohm, C. Synthesis 2001, 2431.
 ${ }^{2}$ Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, $3^{\text {rd }}$ edition, Pergamon Press, 1988.
 ${ }^{3}$ Synthesis of 1-Tosyl-1H-indole-3-carbaldehyde: Guo, X.; Hu, W.; Cheng, S.; Wang, L.; Chang, J. Synth.
 Commun. 2006, 36, 781.
 ${ }^{4}$ Wolfrom, M. L.; Weisblat, D. I.; Zophy, W. H.; Waisbrot, S. W. J. Am. Chem. Soc. 1941, 63, 201.
 ${ }^{5}$ Ibers, J. A.; Hamilton, W. C. International Tables for X-ray Crystallography, Kynoch Press, Birmingham, 1974.
 ${ }^{6}$ SIR-92: Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl. Cryst. 1993, 26, 343.

