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Abstract—A new method for the synthesis of �-butanolides is described. The titanium tetrachloride promoted reaction of silyl
ketene acetals with epoxides, followed by acidic work-up, affords the corresponding butyrolactones in 44–83% yield. © 2002
Elsevier Science Ltd. All rights reserved.

Contrary to nucleophilic epoxide ring opening with
organometallic reagents, which constitutes a well estab-
lished and synthetically highly useful method of car-
bon–carbon bond formation,1 examples of epoxide
reactions with enolates are scarce.2 Lithium enolates of
ketones and esters are unreactive towards epoxides,
which generally precludes the application of what

would probably be the most efficient approach to
homoaldols and butyrolactones (Fig. 1). Dianions of
simple carboxylic acids react with epoxides,3 however, a
large excess of dianion and forcing conditions are often
required. Transmetallation of lithium ester enolates
with diethylaluminium chloride affords the more reac-
tive aluminium enolates, whose reactions with epoxides
afford the �-hydroxy esters in moderate to good yields.4

In order to circumvent the aforementioned problems,
indirect methods have been devised, based on the appli-
cation of diethylethoxyalkynylalane,4a or silylynamine,5

as the acetate enolate equivalents; these approaches are
limited to the synthesis of �-unsubstituted butanolides,
although the latter offers some possibilities to achieve
molecular diversity.

Recently, we have shown that enoxysilanes react with
epoxides in the presence of TiCl4 to give homoaldol
products in moderate to good yields, thus enabling theFigure 1.

Scheme 1.

Keywords : epoxides; ketene acetals; lactones; titanium and compounds; alkylation.
* Corresponding author. Tel.: +381-11-32-82-537; fax: +381-11-63-60-61; e-mail: rsaicic@chem.bg.ac.yu

0040-4039/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0040 -4039 (02 )01070 -5

mailto:rsaicic@chem.bg.ac.yu


Ph
OMe

OTMS O
O

O
Ph

OTMS

OMe

O
O

O

Cl
Cl

OTMS

OMe
O

O

O

O
O

O
Ph

Cl
Cl

O O

O

O
O

O

Cl
Cl

OTMS

OMe
O

O

O

O

O
O

Cl
Cl

OTMS

OMe
O

O

O

O
Cl O

O

Cl

Entry Silyl ketene acetal Epoxide Product Yield b

62% (97%) c1
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48%d

64%

83%d
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66%

69%

2
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a) For the experimental procedure, see ref. 8; b) Yields of isolated, pure compounds; c) Calculated on
    the basis of the converted starting compound; d) Obtained as a 1:1 mixture of diastereoisomers.
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Table 1. TiCl4 promoted reactions of silyl ketene acetals with epoxidesa

transform shown in Eq. (1) (Fig. 1).6 Herein, we
report the extension of this new reaction to silyl
ketene acetals, whose reactions with epoxides under
modified Mukaiyama conditions afford �-butanolides
(the overall transformation corresponding retrosyn-
thetically to Eq. (2), Fig. 1).

When a dichloromethane solution of ethylene oxide
and silyl ketene acetal 1,7 derived from isopropyl 4-
phenylbutanoate, was treated with TiCl4 at −60�
−20°C, TLC of the reaction mixture indicated the

formation of two compounds which, upon treatment
with a catalytic amount of p-TsOH during work-up,
converged to a single product, identified as �-(2-
phenylethyl)-�-butanolide 2 (19%, Scheme 1). Other
Lewis acids (BF3·Et2O, ZnCl2, Ti(OiPr)4, SnCl4)
proved inferior catalysts with respect to TiCl4. Substi-
tuting the smaller methyl group for isopropyl in 1
resulted in a yield enhancement to 38%. After some
experimentation it was found that the reaction is best
carried out in a mixed solvent: n-hexane/
dichloromethane=2/1; under these conditions lactone
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2 was isolated in 62% yield, along with some unreacted
methyl 4-phenylbutanoate (97% yield, based on the
recovered starting material).

The generality of the procedure was tested by reacting
several structurally different silyl ketene acetals with
ethylene oxide under the described conditions.8 In all
cases the corresponding lactones were obtained in good
yields (Table 1, entries 1, 3, 6, 8 and 10). Formation of
�,�-disubstituted butanolides from �,�-disubstituted
silyl ketene acetals indicates the ease of formation of
quaternary centres (entries 8 and 10). The reaction with
cyclohexanecarboxylic ester derived silyl ketene acetal 5
produced a spirobicyclic lactone 6 (entry 10). In addi-
tion to ethylene oxide, reactions with epichlorohydrin
were also studied: in all cases 4-chloromethyl substi-
tuted butanolides were obtained in good yields, result-
ing from a nucleophilic attack at the less substituted
epoxide carbon (entries 2, 4, 7, 9, and 11).9 Cyclohexene
oxide, a 1,2-disubstituted epoxide, gave rise to a con-
densed bicyclic lactone 3 (entry 5). Reactions of 1, 4
and 5 with propene oxide afforded mixtures of regioiso-
meric lactones in modest yields (30–40%).

To summarize, a new method for effecting ester/epox-
ide coupling under non-basic conditions is described,
which may prove a useful complement to existing
methodology for �-butanolide formation.
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