Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modeling and in vitro studies

Zorana Ferjancic, ${ }^{\text {a }}$ Filip Bihelovic, ${ }^{\text {a }}$ Bojan Vulovic, ${ }^{\text {a }}$ Radomir Matovic, ${ }^{\text {c }}$ Milena Trmcic, ${ }^{\text {b }}$ Aleksandar Jankovic, ${ }^{\text {c }}$ Milos Pavlovic, ${ }^{a}$ Filip Djurkovic, ${ }^{\text {a }}$ Radivoje Prodanovic, ${ }^{a}$ Aleksandra Djurdjevic Djelmas, ${ }^{\text {a }}$ Nevena Kalicanin, ${ }^{\text {c }}$ Mario Zlatovic, ${ }^{\text {a }}$ Dusan Sladic, ${ }^{\text {a }}$ Thomas Vallet, ${ }^{\text {d }}$ Marco Vignuzzi, ${ }^{\text {d,e }}$ Radomir N. Saicic ${ }^{\text {a,f, }, * ~}$
${ }^{\text {a }}$ University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
${ }^{\mathrm{b}}$ Innovation Centre of the Faculty of Chemistry, Belgrade
${ }^{\text {c }}$ University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Belgrade
${ }^{d}$ Institut Pasteur, Center for the Viral Populations and Pathogenesis, Paris France
${ }^{e} A^{*}$ STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos \#05-13, Singapore 138648, Singapore
${ }^{\mathrm{f}}$ Serbian Academy of Sciences and Arts, Belgrade

Supplementary material

Table of Contents

1. Computational modelling S3
1.1. Positions of ligands and interactions with the binding site of α-glucosidase II (PNB ID: 5DL0). S3
1.2. Positions of ligands and interactions with the binding site of α-galactosidase A (PNB ID: 6IBK) S11
1.3. Properties of the α-glucosidase II binding site surface S13
1.4. Supraposition of two molecules bound in α-galactosidase (PDB ID: 6IBK) S15
1.5. Table 1 S : Tabular representation of ligand-protein interactions in the binding pocket of α-Glu II for compounds 1, 22, 76 and 77 S15
2. Synthesis of α-glucosidase inhibitors S16
2.1. ($2 R, 3 S, 4 S, 5 R, 6 S$)-2-(hydroxymethyl)-6-methoxytetrahydro-2H-pyran-3,4,5-triol (108) S16
2.2. ($2 R, 3 S, 4 R, 5 R$)-2,3,4,6-tetrakis(benzyloxy)-5-hydroxyhexanamide (109) S16
2.3. ($2 R, 3 R, 4 R, 5 S$)-2-(hydroxymethyl)piperidine-3,4,5-triol (DNJ, 2) S17
2.4. (2R,3R,4R,5S)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-1-methylpiperidine (110) S18
2.5. ($2 R, 3 R, 4 R, 5 S$)-2-(hydroxymethyl)-1-methylpiperidine-3,4,5-triol (75) ${ }^{1,2}$ S18
2.6. ($2 R, 3 R, 4 R, 5 S$)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-1-butylpiperidine (111) S18
2.6.1. Method 1: Alkylation S18
2.6.2. Method 2: Reductive amination S18
2.7. ($2 R, 3 R, 4 R, 5 S$)-1-butyl-2-(hydroxymethyl)piperidine-3,4,5-triol (miglustat, 1) S19
2.8. ($2 R, 3 R, 4 R, 5 S$)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-1-nonylpiperidine (112) S19
2.9. (2R,3R,4R,5S)-2-(hydroxymethyl)-1-nonylpiperidine-3,4,5-triol (76) S19
3. Synthesis of α-galactosidase A inhibitors S20
3.1. (4aR,7S,8S,8aS)-7-((tert-butyldimethylsilyl)oxy)-2,2,5-trimethylhexahydro-4H-[1,3]dioxino[5,4- b]pyridin-8-ol (116) S20
3.2. ($2 R, 3 S, 4 R, 5 S$)-2-(hydroxymethyl)-1-methylpiperidine-3,4,5-triol (87) ${ }^{4}$ S21
3.3. (4aR,7S,8S,8aS)-7-((tert-butyldimethylsilyl)oxy)-2,2-dimethyl-5-nonylhexahydro-4H- [1,3]dioxino[5,4-b]pyridin-8-ol (118) S21
3.4. ($2 R, 3 S, 4 R, 5 S$)-2-(hydroxymethyl)-1-nonylpiperidine-3,4,5-triol (89) ${ }^{5}$ S21
3.5. (4aR,7S, $8 S, 8 \mathrm{aS}$)-5-(5-(bicyclo[1.1.1]pentan-1-yl)pentyl)-7-((tert-butyldimethylsilyl)oxy)-2,2- dimethylhexahydro-4H-[1,3]dioxino[5,4-b]pyridin-8-ol (95) and (4aR,7S,8R,8aS)-5-(5- (bicyclo[1.1.1]pentan-1-yl)pentyl)-8-((tert-butyldimethylsilyl)oxy)-2,2-dimethylhexahydro-4H- [1,3]dioxino[5,4-b]pyridin-7-ol (96) S22
3.6. ($2 R, 3 S, 4 R, 5 S$)-1-(5-(bicyclo[1.1.1]pentan-1-yl)pentyl)-2-(hydroxymethyl)piperidine-3,4,5-triol (53) S22
3.7. $(2 R, 3 S, 4 R)$-2-(hydroxymethyl)piperidine-3,4-diol $(93)^{6}$ S23
3.8. (4aR,8R,8aS)-2,2-dimethyl-5-nonylhexahydro-4H-[1,3]dioxino[5,4-b]pyridin-8-ol (119) S23
3.9. (2R,3S,4R)-2-(hydroxymethyl)-1-nonylpiperidine-3,4-diol (94). S23
4. Synthesis of non-iminosugar-type mannosidase inhibitors. 224
5. Biochemical tests S25
5.1. Inhibition assay for α-glucosidase S25
5.1.1. Yeast α-glucosidase expression and purification S25
5.1.2. Inhibition assay for α-glucosidase. S25
5.2. Inhibition assay for α-galactosidase S27
6. Virology S31
7. References S33
8. Copies of NMR spectra for selected compounds 334

1. Computational modelling

All structures shown in Figures S1-S19 can be downloaded as PDB files at the address https://www.chem.bg.ac.rs/~mario/SmartRep/
1.1. Positions of ligands and interactions with the binding site of α-glucosidase II (PNB ID: 5DLO)

Figure S1 Position of ligand $\mathbf{1}(\mathbf{A})$ and interactions with amino acid residues (B) in the binding site of α glucosidase II.

Figure S2 Position of ligand $\mathbf{2}$ (A) and interactions with amino acid residues (B) in the binding site of α glucosidase II.

Figure S3 Position of ligand $\mathbf{5}(\mathbf{A})$ and interactions with amino acid residues (B) in the binding site of α glucosidase II.

Figure S4 Position of ligand $6(\mathbf{A})$ and interactions with amino acid residues (B) in the binding site of α glucosidase II.

Figure S5 Position of ligand $\mathbf{7 (A)}$ and interactions with amino acid residues (B) in the binding site of α glucosidase II.

Figure S6 Position of ligand $\mathbf{8}(\mathbf{A})$ and interactions with amino acid residues (B) in the binding site of α glucosidase II.

Figure $\mathbf{S 7}$ Position of ligand $\mathbf{9}(\mathbf{A})$ and interactions with amino acid residues (\mathbf{B}) in the binding site of α glucosidase II.

Figure S8 Position of ligand $\mathbf{1 0 (A)}$ and interactions with amino acid residues (B) in the binding site of α glucosidase II.

Figure S9 Position of ligand $11(\mathbf{A})$ and interactions with amino acid residues (\mathbf{B}) in the binding site of α glucosidase II.

Figure S10 Position of ligand $\mathbf{1 2}(\mathbf{A})$ and interactions with amino acid residues (B) in the binding site of α glucosidase II.

Figure S11 Position of ligand $\mathbf{1 3}(\mathbf{A})$ and interactions with amino acid residues (\mathbf{B}) in the binding site of α glucosidase II.

Figure S12 Position of ligand $\mathbf{2 2}(\mathbf{A})$ and interactions with amino acid residues (\mathbf{B}) in the binding site of α glucosidase II.

Figure S13 Position of ligand $\mathbf{3 8}(\mathbf{A})$ and interactions with amino acid residues (B) in the binding site of α glucosidase II.

Figure S14 Position of ligand $\mathbf{7 6}(\mathbf{A})$ and interactions with amino acid residues (\mathbf{B}) in the binding site of α glucosidase II.

Figure S15 Position of ligand $\mathbf{7 7}(\mathbf{A})$ and interactions with amino acid residues (B) in the binding site of α glucosidase II.

1.2. Positions of ligands and interactions with the binding site of α-galactosidase A (PNB ID: 6IBK)

Figure S16 Position of ligand $\mathbf{4 (A)}$ and interactions with amino acid residues (B) in the binding site of α galactosidase A.

Figure S17 Position of ligand $\mathbf{4 0}(\mathbf{A})$ and interactions with amino acid residues (B) in the binding site of α galactosidase A.

A
 B

Interactions
\square van der Waals
Salt Bridge
Attractive Charge
Conventional Hydrogen Bond Carbon Hydrogen Bond

Figure S18 Position of ligand $\mathbf{4 1}(\mathbf{A})$ and interactions with amino acid residues (B) in the binding site of α galactosidase A.

Figure S19 Position of ligand $\mathbf{4 2}$ (A) and interactions with amino acid residues (B) in the binding site of α galactosidase A.

1.3. Properties of the α-glucosidase II binding site surface

Figure S20 Aromatic properties of the α-glucosidase II binding site surface with compound $\mathbf{1}$ bound.

Figure $\mathbf{S 2 1} \mathbf{H}$-bond properties of the α-glucosidase II binding site surface with compound $\mathbf{1}$ bound.

Figure S22 Hydrophobic α-glucosidase II binding site surface with compound $\mathbf{1}$ bound.

Figure S23 Solvent accesible α-glucosidase II binding site surface with compound $\mathbf{1}$ bound.

1.4. Supraposition of two molecules bound in α-galactosidase (PDB ID: 6IBK)

Figure S24 Best binding poses of $\mathbf{4}$ (green carbons) and $\mathbf{4 0}$ (orange carbons). Although they take almost the same position in the binding site of α-galactosidase A, the lack of vital interactions leads to lower binding score for 40.

1.5. Table 1S: Tabular representation of ligand-protein interactions in the binding pocket of α-Glu II for compounds 1, 22, 76 and 77

Can be dowloaded at:
https://www.chem.bg.ac.rs/~mario/SmartRep/
(Item \#20)

2. Synthesis of α-glucosidase inhibitors

Compound 74 (the key intermediate in synthesis of DNJ) was prepared from α-glucose 73 by a modified literature procedure (Scheme 1). ${ }^{1}$ The obtained spectral data are in accordance with the literature data.

Scheme S1 Synthesis of the key intermediate 74.

2.1. ($2 R, 3 S, 4 S, 5 R, 6 S$)-2-(hydroxymethyl)-6-methoxytetrahydro-2H-pyran-3,4,5-triol (108)

To a suspension of α-glucose ($50.0 \mathrm{~g}, 0.278 \mathrm{~mol}$) in methanol (250 mL) was added acetyl chloride (2 mL , 28 mmol) dropwise and the reaction mixture was refluxed for 72 h (a clear solution was formed after 15 minutes). After the disapperance of the starting material (monitored by TLC, petroleum ether/ethyl acetate $=4: 6$), the reaction mixture was concentrated to $1 / 4$ of the volume. A crystal of methyl $\alpha-D-$ glucopyranose was added to the residue, whereupon crystallization occured, affording 40.0 g , (74\%) of product 108, as white cristals, used in the next step without additional purification.

2.2. ($2 R, 3 S, 4 R, 5 R$)-2,3,4,6-tetrakis(benzyloxy)-5-hydroxyhexanamide (109)

To a solution of 2,3,4,6-tetra-O-benzyl-D-gluconolactone (5.0 g ; 9.3 mmol) in THF (21 mL) was added 25% $\mathrm{NH}_{3(\mathrm{aq)}}(99 \mathrm{~mL})$ and the reaction mixture was stirred at room temperature for 16 h . The reaction mixture was diluted with diethyl ether (60 mL) and the aqueous layer was extraced with diethyl ether (3 x 80 mL). The organic layer was dried over anhydrous MgSO_{4}, concentrated under reduced pressure and purified by dry-flash chromatography (eluent: petroleum ether/ethyl acetate $=4: 6$), to afford $4.8 \mathrm{~g}(92 \%)$ of the
product 109, as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H})$, $4.73-4.46(\mathrm{~m}, 8 \mathrm{H}), 4.24(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=5.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{dd}, \mathrm{J}=9.8$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.1,138.3$, $138.2,137.9,136.9,128.8,128.5$ (2C), 128.4, 128.2, 128.00 (2C), 127.9, 127.8, 80.7, 79.8, 77.8, 75.4, 74.3, 73.9, 73.5, 71.5, 71.2.

Scheme S2 Synthesis of DNJ-derived α-glucosidase inhibitors.

2.3. ($2 R, 3 R, 4 R, 5 S$)-2-(hydroxymethyl)piperidine-3,4,5-triol (DNJ, 2)

To a solution of $\mathbf{7 4}(60.0 \mathrm{mg}$; 0.115 mmol$)$ in ethanol (4 mL) were added $\mathrm{HCl}_{(\mathrm{aq)}}(1.5 \mathrm{M}$, to obtain $\mathrm{pH}=3)$ and $10 \% \mathrm{Pd} / \mathrm{C}(37.0 \mathrm{mg} ; 0.045 \mathrm{mmol})$ and the reaction mixture was stirred for 57 h under a hydrogen atmosphere (5 atm). The reaction mixture was then diluted with methanol, filtered, concentrated under reduced pressure and purified by column chromatography (eluent: ethyl acetate/methanol/25\% $\mathrm{NH}_{3(\mathrm{aq})}=$ 1:1:0.05), to afford $15.1 \mathrm{mg}(81 \%)$ of the product 2, as a viscous oil. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.86$ (dd, $J=11.7$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, \mathrm{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ (ddd, $J=10.7,9.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{t}, \mathrm{J}$ $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=12.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=12.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}(100$ $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ 78.2, 71.3, 70.7, 61.2, 60.4, 48.5. IR (ATR): $v^{\sim}=3317,2892,2462,1964,1377,1097,1039$, 1017, $747,596 \mathrm{~cm}^{-1}$. HRMS (m/z) [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{4}$: 164.0917, found: 164.0920.

2.4. ($2 R, 3 R, 4 R, 5 S$)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-1-methylpiperidine (110)

To a solution of amine $\mathbf{7 4}(10.7 \mathrm{mg} ; 0.02 \mathrm{mmol})$ in EtOAc (0.2 mL) were added $30 \% \mathrm{HCHO}_{(\mathrm{aq})}(9 \mu \mathrm{~L})$, AcOH $(3 \mu \mathrm{~L})$ and $\mathrm{Pd}(\mathrm{OH})_{2}(7.0 \mathrm{mg})$ and the reaction mixture was stirred 6.5 h under a hydrogen atmosphere (1 atm). The mixture was filtered, concentrated under reduced pressure and purified by column chromatography (eluent: petroleum ether/ethyl acetate $=3: 2$), to afford $9.8 \mathrm{mg}(91 \%)$ of the product 110, as a viscous oil. $[\alpha]_{D^{20}}-6.6\left(c 0.01\right.$ in $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.21(\mathrm{~m}, 18 \mathrm{H}), 7.14-7.09(\mathrm{~m}$, $2 \mathrm{H}), 4.95$ ($\mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.86 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (dd, J = 15.5, 11.6 Hz , $2 \mathrm{H}), 4.48$ (dd, $J=19.7,12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.53(\mathrm{~m}, 4 \mathrm{H}), 3.47(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.07(\mathrm{dd}, J=11.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.1,138.7,138.6,138.0,128.6,128.5(2 \mathrm{C}), 128.4$ (2C), 128.0 (3C), 127.8, 127.7, 127.6, $87.4,78.3$ (2C), 75.5, 75.3, 73.7, 72.9, 67.3, 65.4, 59.1, 42.1. IR (ATR): $v^{\sim}=3088,3063,3030,2863,1605$, 1496, 1454, 1362, 1318, $1252 \mathrm{~cm}^{-1}$. HRMS (m/z) [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{NO}_{4}$: 538.2952, found: 538.2971.

2.5. ($2 R, 3 R, 4 R, 5 S$)-2-(hydroxymethyl)-1-methylpiperidine-3,4,5-triol (75$)^{1,2}$

Compound 75 was prepared according to the literature procedure. ${ }^{1,2}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.89(\mathrm{qd}, J=12.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ $(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=11.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 79.8,70.8,70.0,69.7,61.1,58.1,42.1$.

2.6. ($2 R, 3 R, 4 R, 5 S$)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-1-butylpiperidine (111)

2.6.1. Method 1: Alkylation

To a solution of amine 74 (99.5 mg ; 0.19 mmol) and DIPEA ($149.0 \mathrm{mg} ; 1.15 \mathrm{mmol}$) in DMF (1 mL) was added 1-bromobutane ($118.0 \mathrm{mg} ; 1.15 \mathrm{mmol}$) and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h under an argon atmosphere. The reaction mixture was then diluted with diethyl ether (70 mL), washed with water ($2 \times 15 \mathrm{~mL}$) and brine (15 mL), dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was purified by dry-flash chromatography (eluent: petroleum ether/ethyl acetate = $85: 15$) to give compound $\mathbf{1 1 1}$ ($\mathbf{7 6 . 0} \mathrm{mg}, 69 \%$) as a colorless oil.

2.6.2. Method 2: Reductive amination

A mixture of amine $\mathbf{7 4}$ ($70.0 \mathrm{mg} ; 0.13 \mathrm{mmol}$), butanal ($49.0 \mathrm{mg} ; 0.67 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(31.0 \mathrm{mg} ; 0.03$ mmol) in ethanol (3.8 mL) was stirred for 24 h under a hydrogen atmosphere (4.2 atm). The reaction mixture was then filtered, concentrated under reduced pressure and purified by column chromatography (eluent: petroleum ether/ethyl acetate $=85: 15$) to afford compound $\mathbf{1 1 1}(55.9 \mathrm{mg}, 72 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.21(\mathrm{~m}, 18 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=10.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.62(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.39(\mathrm{~m}, 3 \mathrm{H}), 3.70-3.50(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{J}=11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.10(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2,138.8(2 \mathrm{C}), 138.0,128.6,128.5$ (2C), 128.4 (4C), 128.0 , $127.9,127.7,127.6,127.5,87.6,78.8(2 C), 75.4,73.3,73.6,72.9,65.6,63.9,54.6,52.3,25.9,20.8,14.1$.

IR (ATR): $v^{\sim}=3088,3061,3030,2958,2910,2867,1497,1453,1360,1118,1089,1063,998,745,695,675$ cm^{-1}. HRMS (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{NO}_{4}$: 580.3421, found: 580.3439.

2.7. ($2 R, 3 R, 4 R, 5 S$)-1-butyl-2-(hydroxymethyl)piperidine-3,4,5-triol (miglustat, 1)

A mixture of amine 111 (127.0 mg ; 0.217 mmol), trifluoroacetic acid ($44 \mu \mathrm{~L} ; 0.576 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}$ $(150.0 \mathrm{mg} ; 0.141 \mathrm{mmol})$ in methanol (3.3 mL) was stirred for 26 h under a hydrogen atmosphere (1 atm). The reaction mixture was then filtered, concentrated under reduced pressure and purified by dry-flash chromatography (eluent: ethyl acetate/methanol/25\% NH_{3} (aq) $=7: 3: 0.05$) to afford compound 1 (39.2 mg , 82%) as a colorless oil. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.91(\mathrm{qd}, J=12.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.60$ (ddd, $J=10.8,9.3,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.44(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.75-$ $2.65(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}(100 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 78.0,69.7,68.4,65.0,57.0,54.9,51.8,24.9,20.0,13,1 . \operatorname{IR}(A T R): v^{\sim}=3352,2958,2932,2873,1665$, 1460, 1378, 1086, 1014, 644 cm^{-1}. $\mathrm{HRMS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{4}: 220.1543$, found: 220.1547.

2.8. ($2 R, 3 R, 4 R, 5 S$)-3,4,5-tris(benzyloxy)-2-((benzyloxy)methyl)-1-nonylpiperidine (112)

A mixture of amine 74 (140.0 mg ; 0.26 mmol), nonanal ($218.0 \mathrm{mg} ; 0.138 \mathrm{mmol}$) and 10\% Pd/C (62.0 mg ; 0.06 mmol) in ethanol (7.6 mL) was stirred for 23 h under a hydrogen atmosphere (4.2 atm). The reaction mixture was then filtered, concentrated under reduced pressure and purified by column chromatography (eluent: petroleum ether/ethyl acetate $=85: 15$) to afford compound 112 (121.0 mg, 70\%) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.22(\mathrm{~m}, 18 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=$ $10.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.39(\mathrm{~m}, 3 \mathrm{H}), 3.71-3.51(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=11.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.47-1.06 (m, 14H), $0.9(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz} 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0,138.6(2), 137.8,128.4,128.3$ (4C), 127.8 (2C), 127.6, 127.5, 127.4, 87.4, 78.6, 75.3, 73.4, 72.7, 65.3, 63.7, 54.4, 52.4, 31.9, 29.6, 27.5, 23.5, 22.7, 14.10. IR (ATR): $v^{\sim}=3091,3031,2955,2920,2849,1498,1454,1362,1148,1177,1092,1066$, 1053, 734, $696 \mathrm{~cm}^{-1}$. HRMS (m/z) [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{NO}_{4}$: 650.4204, found: 650.4224.

2.9. (2R,3R,4R,5S)-2-(hydroxymethyl)-1-nonylpiperidine-3,4,5-triol (76)

A mixture of amine 112 (87.0 mg ; 0.134 mmol), trifluoroacetic acid ($27 \mu \mathrm{~L} ; 0.35 \mathrm{mmol}$) and 10\% Pd/C (93.0 mg ; 0.084 mmol) in methanol (1.9 mL) was stirred for 12 h under a hydrogen atmosphere (1 atm). The reaction mixture was then filtered, concentrated under reduced pressure and purified by dry-flash chromatography (eluent: ethyl acetate/methanol/25\% $\mathrm{NH}_{3}(\mathrm{aq})=7: 3: 0.05$) to afford compound 76 (27.3 mg, 70%) as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 3.90(\mathrm{qd}, J=12.2,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.44$ $(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{t}, J=9.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.16(\mathrm{dd}, J=11.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.78(\mathrm{~m}$, $1 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.21(\mathrm{~m}, 12 \mathrm{H}), 0.90(\mathrm{t} . J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 79.7,70.9,69.7,67.4,57.9,56.6,53.9,33.0,30.6,30.5,30.4,28.3,24.9,23.7,14.4$. IR (ATR): $v^{\sim}=$ $3348,2956,2925,2855,1668,1465,1378,1089,1031 \mathrm{~cm}^{-1}$. HRMS (m/z) [M+H] calcd. for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NO}_{4}$: 290.2325, found: 290.2331.

3. Synthesis of α-galactosidase A inhibitors

Scheme S3 Synthesis of DGJ and the analogues thereof.

3.1. (4aR,7S,8S,8aS)-7-((tert-butyldimethylsilyl)oxy)-2,2,5-trimethylhexahydro-4H-[1,3]dioxino[5,4-b]pyridin-8-ol (116)

To a solution of amine $85^{3}(15.5 \mathrm{mg} ; 0.047 \mathrm{mmol})$ in EtOAc $(0.5 \mathrm{~mL})$ were added $30 \% \mathrm{HCHO}(\mathrm{aq})(28 \mu \mathrm{~L})$, acetic acid $(5 \mu \mathrm{~L})$ and $\mathrm{Pd}(\mathrm{OH})_{2}(15.0 \mathrm{mg})$ and the reaction mixture was stirred overnight under a hydrogen atmosphere (1 atm). The mixture was filtered, concentrated under reduced pressure and purified by column chromatography (ethyl acetate/methanol/25\% $\mathrm{NH}_{3}(\mathrm{aq})=19: 1: 0.05$), to afford 14.8 mg (94%) of product 116, as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}+42.5(c 0.01$ in MeOH$) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.23-4.19(\mathrm{~m}$, $1 \mathrm{H}), 4.01-3.86(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{td}, J=8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=11.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.30$ $(\mathrm{s}, 3 \mathrm{H}), 1.96(\mathrm{t}, \mathrm{J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 99.7,75.4,70.1,69.6,61.5,60.9,60.2,42.7,28.9,26.0,19.4,18.2,-4.3,-4.4$. IR (ATR): $v^{\sim}=3570,2990,2953,2929,2885,2856,1462,1381,1349,1280,1250,1199 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{Si}: 332.2252$, found: 332.2259.

3.2. (2R,3S,4R,5S)-2-(hydroxymethyl)-1-methylpiperidine-3,4,5-triol (87) ${ }^{4}$

A solution of amine 116 (14.1 mg ; 0.043 mmol) in methanol $/ 3 \mathrm{M} \mathrm{HCl} \mathrm{l}_{(\mathrm{aq})}$ solvent mixture ($0.93 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=$ 3:1) was stirred at room temperature for 5 h . After the volatiles were removed under reduced pressure, the residue was purified by column chromatography (gradient ethyl acetate/methanol/25\% $\mathrm{NH}_{3}(\mathrm{aq})=$ 9:1:0.05 to 1:1:0.05) to afford $5.9 \mathrm{mg}(78 \%)$ of product 87 , as a viscous oil. $[\alpha]_{\mathrm{D}}{ }^{20}+0.15$ (c 0.0067 in MeOH). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.04-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{td}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.28$ (dd, $J=9.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.01(\mathrm{dd}, J=11.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{t}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 76.8,72.0,68.2(2 \mathrm{C}), 62.3,62.0,42.6 . \mathrm{IR}(\mathrm{ATR}): v^{\sim}=3352,2924$, $2803,1660,1569,1463,1417,1161 \mathrm{~cm}^{-1}$.

3.3. (4aR,7S,8S,8aS)-7-((tert-butyldimethylsilyl)oxy)-2,2-dimethyl-5-nonylhexahydro-4H-[1,3]dioxino[5,4-b]pyridin-8-ol (118)

A mixture of amine 85^{3} (30.5 mg ; 0.096 mmol), nonanal ($67.0 \mathrm{mg} ; 0.66 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(20.0 \mathrm{mg}$; 0.026 mmol) in ethanol (2.7 mL) was stirred for 2.5 h under a hydrogen atmosphere (4 atm). The mixture was filtered, concentrated under reduced pressure and purified by column chromatography (benzene/ethyl acetate $=7: 3$), to afford $27.3 \mathrm{mg}(64 \%)$ of the product 118, as a colorless oil. $[\alpha]_{D^{20}}-1.35$ (c 0.01 in CHCl_{3}). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.18-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.78(\mathrm{~m}, 3 \mathrm{H}), 3.24(\mathrm{td}, \mathrm{J}=8.6,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=11.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2,17(\mathrm{~s}, 1 \mathrm{H}), 2.05(\mathrm{t}, \mathrm{J}=10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}), 1.32-1.18(\mathrm{~m}, 14 \mathrm{H}), 0.89-0.81(\mathrm{~m}, 12 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 99.7,75.5,70.6,69.8,61.1,57.4,56.6,52.9,32.0,29.7(2 \mathrm{C}), 29.4,28.5,27.6,26.0,24.1,22.8$, $20.0,18.3,14.2,-4.3$ (2C). IR (ATR): $v^{\sim}=3571,2990,2954,2856,2797,1463,1381,1252 \mathrm{~cm}^{-1}$. HRMS (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{50} \mathrm{NO}_{4} \mathrm{Si}: 444.3504$, found: 444.3514 .

3.4. ($2 R, 3 S, 4 R, 5 S$)-2-(hydroxymethyl)-1-nonylpiperidine-3,4,5-triol (89) ${ }^{5}$

A solution of amine $118(16.0 \mathrm{mg}, 0.036 \mathrm{mmol})$ in methanol $/ 3 \mathrm{M} \mathrm{HCl} \mathrm{l}_{\text {(aq) }}$ solvent mixture $(0.76 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=$ $3: 1)$ was stirred at room temperature for 4.5 h . After the volatiles were removed under reduced pressure, the residue was purified by column chromatography (gradient ethyl acetate/methanol $=19: 1$ to 1:1), to afford $8.3 \mathrm{mg}(80 \%)$ of the product 89 , as a viscous oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.11-4.06(\mathrm{~m}, 1 \mathrm{H})$, 3.99-3.84 (m, 3H), 3.41 (dd, J = 8.9, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.31-3.22 (m, 3H), 3.16-2.95 (m, 3H), $2.68(\mathrm{t}, \mathrm{J}=11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.76-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 75.2,71.3$, $67.0,66.1,61.0,55.4(2 \mathrm{C}), 33.0,30.6,30.3,28.0,24.3,23.7,14.4$.

3.5. (4aR,7S,8S,8aS)-5-(5-(bicyclo[1.1.1]pentan-1-yl)pentyl)-7-((tert-butyldimethylsilyl)oxy)-2,2-dimethylhexahydro-4H-[1,3]dioxino[5,4-b]pyridin-8-ol (95) and (4aR,7S,8R,8aS)-5-(5-(bicyclo[1.1.1]pentan-1-yl)pentyl)-8-((tert-butyldimethylsilyl)oxy)-2,2-dimethylhexahydro-4H-[1,3]dioxino[5,4-b]pyridin-7-ol (96)

A solution of amine 85^{3} (30.0 mg ; 0.095 mmol), iodide $\mathbf{8 0}(37.0 \mathrm{mg} ; 0.14 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(46.0 \mathrm{mg} ; 0.33$ $\mathrm{mmol})$ in DMF (0.3 mL) was stirred at $80^{\circ} \mathrm{C}$ under an argon atmosphere. After 6 h , the mixture was diluted with diethyl ether, washed with saturated $\mathrm{NaHCO}_{3(a q)}$ and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate $=7: 3$), to afford $27.7 \mathrm{mg}(63 \%)$ of the product 95 and 13.7 mg (31\%) of the product 96 , both as viscous oils.
(4aR,7S,8S,8aS)-5-(5-(bicyclo[1.1.1]pentan-1-yl)pentyl)-7-((tert-butyldimethylsilyl)oxy)-2,2-dimethylhexahydro-4H-[1,3]dioxino[5,4-b]pyridin-8-ol (95): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.19-4.14$ (m , $1 \mathrm{H}), 3.97-3.79(\mathrm{~m}, 3 \mathrm{H}), 3.26(\mathrm{td}, J=8.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=11.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.42$ (s, 1H), 2.31 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.19(\mathrm{brs}, 1 \mathrm{H}), 2.07(\mathrm{t}, \mathrm{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}), 1.40-1.17$ $(\mathrm{m}, 8 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 99.7,77.5,70.6,69.7,61.1,57.4$, $56.6,52.8,50.4,45.9,32.7,28.4,27.7,27.5,26.6,26.0,24.2,20.0,18.2,-4.3,-4.4$ IR (ATR): $v^{\sim}=3572$, 3494, 2958, 2928, 2905, 2867, 1462, 1381, 1278, 1252, $1220 \mathrm{~cm}^{-1}$. HRMS (m / z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{NO}_{4} \mathrm{Si}: 454.3347$, found: 454.3359.
(4aR,7S,8R,8aS)-5-(5-(bicyclo[1.1.1]pentan-1-yl)pentyl)-8-((tert-butyldimethylsilyl)oxy)-2,2-
dimethylhexahydro-4H-[1,3]dioxino[5,4-b]pyridin-7-ol (96): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.06-4.02(\mathrm{~m}$, $1 \mathrm{H}), 4.02-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{dd}, \mathrm{J}=12.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, \mathrm{J}=9.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, \mathrm{J}=10.9,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.67-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{brs}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H})$, $1.48-1.16(\mathrm{~m}, 8 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 99.3$, $77.7,70.4,68.2,61.5,57.1,55.9,53.0,50.5,45.9,32.7,28.5,27.7,27.5,26.6,26.0,24.9,20.1,18.4,-4.1$, -4.2 . IR (ATR): $v^{\sim}=3566,2958,2929,2904,2800,1463,1380,1251,1195 \mathrm{~cm}^{-1}$. HRMS (m/z) [M+H] ${ }^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{NO}_{4} \mathrm{Si}: 454.3347$, found: 454.3363.
3.6. ($2 R, 3 S, 4 R, 5 S$)-1-(5-(bicyclo[1.1.1]pentan-1-yl)pentyl)-2-(hydroxymethyl)piperidine-3,4,5-triol
(53)

Described here is the preparation of $\mathbf{5 3}$ from $\mathbf{9 5}$; deprotection of $\mathbf{9 6}$ also afforded product $\mathbf{5 3}$. A solution of amine 95 ($22.1 \mathrm{mg} ; 0.047 \mathrm{mmol}$) in methanol $/ 3 \mathrm{M} \mathrm{HCl}($ (aq) $)$ solvent mixture ($1.05 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=3.2: 1$) was stirred at room temperature for 48 h . After the volatiles were removed under reduced pressure, the residue was purified by three consecutive chromatographies: column chromatography (gradient ethyl acetate/methanol/25\% $\mathrm{NH}_{3 \text { (aq) }}=9: 1: 0.05$ to 3:2:0.05), ion exchange chromatography ($\mathrm{H}_{2} \mathrm{O}$ then 1 M NH (aq)) and column chromatography (ethyl acetate/methanol/25\% NH_{3} (aq) $=7: 3: 0.05$) to afford 7.1 mg (50\%) of the product 53, as a viscous oil. $[\alpha]_{\mathrm{D}}{ }^{20}-12.9$ (c 0.0059 in MeOH). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.00$ (dd, $J=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86-3.79 (m, 3H), 3.25 (dd, J = 9.2, 3.3 Hz, 1H), 3.03 (dd, J=11.3, 4.9 Hz, 1H), 2.82-
$2.74(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{t}, \mathrm{J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 5 \mathrm{H}), 1.58-$ $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 76.9,72.0,68.6,65.4$, $62.1,57.5,54.1,51.2,46.8,33.6,28.7,28.2,27.5,24.9$. IR (ATR): $v^{\sim}=3366,2960,2867,2241,2078,1622$, 1423, 1354, $1194 \mathrm{~cm}^{-1}$. HRMS (m/z) [M+H] calcd. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{4}$: 300.2169, found: 300.2177.

Scheme S4 Synthesis of 4-epi-fagomine and the N-alkylated analogue.

3.7. (2R,3S,4R)-2-(hydroxymethyl)piperidine-3,4-diol (93) ${ }^{6}$

The compound 93 was prepared from 92^{6} (made using D-proline as the catalyst) according to the literature procedure. ${ }^{6}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.97-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.73(\mathrm{~m}, 3 \mathrm{H}), 3.37-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.20(\mathrm{~m}, 1 \mathrm{H})$, 3.01 (td, $J=13.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 69.2$, 67.8, 62.1, 61.2, 43.7, 26.2 .

3.8. (4aR,8R,8aS)-2,2-dimethyl-5-nonylhexahydro-4H-[1,3]dioxino[5,4-b]pyridin-8-ol (119)

A mixture of amine 92^{6} (made using D-proline as the catalyst) ($25.5 \mathrm{mg} ; 0.136 \mathrm{mmol}$), nonanal (95.0 mg ; $0.66 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(28.0 \mathrm{mg} ; 0.026 \mathrm{mmol})$ in ethanol $(3.8 \mathrm{~mL})$ was stirred for 3 h under a hydrogen atmosphere (4 atm). The mixture was filtered, concentrated under reduced pressure and purified by column chromatography (gradient methylene chloride/methanol = 49:1 to 7:3), to afford 23.2 mg (54\%) of the product 119, as a colorless oil. $[\alpha]_{D}{ }^{20}-24.8\left(c 0.01\right.$ in MeOH). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.14-4.07$ $(\mathrm{m}, 1 \mathrm{H}), 4.01-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{dt}, J=11.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dt}, J=11.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 1 \mathrm{H})$ 2.52-2.42 (m, 1H), 2.26 (t, J = $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{qd}, J=12.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 1 \mathrm{H})$, 1.53-1.36 (m, 8H), 1,36-1.18 (m, 12H), $0.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 101.4,71.8$, $71.3,62.8,58.6,55.3,52.2,33.9,31.6,31.5,31.3,30.6,29.8,28.7,25.6,24.6,20.5,15.3 . \operatorname{IR}$ (ATR): $v^{\sim}=$ 3580, 3442, 2989, 2926, 2855, 2792, 1465, 1380, 1346, 1270, $1228 \mathrm{~cm}^{-1}$. HRMS (m/z) [M+H] calcd. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{NO}_{3}: 314.2690$, found: 314.2699.

3.9. (2R,3S,4R)-2-(hydroxymethyl)-1-nonylpiperidine-3,4-diol (94)

A solution of amine 119 ($18.4 \mathrm{mg}, 0.059 \mathrm{mmol}$) in methanol $/ 3 \mathrm{M} \mathrm{HCl}_{(a q)}$ solvent mixture ($1.2 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=3: 1$) was stirred at room temperature for overnight. After the volatiles were removed under reduced pressure, the residue was purified by column chromatography (gradient methylene chloride/methanol = 49:1 to 1:1), to afford 11.3 mg (70\%) of the product 94, as a viscous oil. $[\alpha]_{\mathrm{D}}{ }^{20}-5.8(c 0.0093$ in MeOH$) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.08-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.25-2.95$
$(\mathrm{m}, 4 \mathrm{H}), 2.11(\mathrm{qd}, J=13.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.25(\mathrm{~m}, 12 \mathrm{H}), 0.92(\mathrm{t}$, $J=6.6,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 69.3,65.9,33.0,30.5,30.3,27.9,23.7,14.4 . \mathrm{IR}(\mathrm{ATR}): v^{\sim}=3342$, 2956, 2925, 2855, 1575, $1467 \mathrm{~cm}^{-1}$. HRMS (m/z) [M+H $]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{NO}_{3}$: 274.2377, found: 274.2384.

4. Synthesis of non-iminosugar-type mannosidase inhibitors

The compound AR 524, 71 was prepared according to the literature procedure. ${ }^{7}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.17-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.72-6.64(\mathrm{~m}, 5 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 3.88$ $(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 2.93-2.88(\mathrm{~s}, 7 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{dt}, \mathrm{J}=4.6 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.0,150.0,147.8,145.9,139.3,137.1,129.4,128.7,120.7,114.0$, $112.8,108.3,108.2,100.9,55.3,53.2,47.9,47.3,40.8,35.7$. IR (ATR) $v^{\sim}=2992,2834,2804,1613,1511$, 1486, 1440, 1247, 1179, 1038, 936, 807, 807. HRMS (ESI) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} 419.2329[\mathrm{M}+\mathrm{H}]^{+}$; found 419.2319 .

5. Biochemical tests

5.1. Inhibition assay for α-glucosidase

5.1.1. Yeast α-glucosidase expression and purification

Figure S25 Silver-stained SDS electrophoregram: Sample 1 is α-glucosidase; MM stands for molecular markers

5.1.2. Inhibition assay for α-glucosidase

Figure S26 Dependence of percentage of inhibition of α-glucosidase on concentration of compound $\mathbf{1 .}$

Figure S27 Dependence of percentage of inhibition of α-glucosidase on concentration (A) and logc (B) of compound 2.

A

B

Figure S28 Dependence of percentage of inhibition of α-glucosidase on concentration (A) and logc (B) of compound 8.

Figure S29 Dependence of percentage of inhibition of α-glucosidase on concentration (\mathbf{A}) and $\operatorname{logc}(\mathbf{B})$ of compound 22.

Figure S30 Dependence of percentage of inhibition of α-glucosidase on concentration (A) and logc (B) of compound 75.

Figure S31 Dependence of percentage of inhibition of α-glucosidase on concentration (A) and logc (B) of compound 77.

5.2. Inhibition assay for α-galactosidase

A

B

4
migalastat

Figure S32 Dependence of percentage of inhibition of α-galactosidase A on concentration (A) and logc (B) of compound 4.

A

B

Figure S33 Dependence of percentage of inhibition of α-galactosidase A on concentration (A) and loge (B) of compound 40.

A

B

Figure S34 Dependence of percentage of inhibition of α-galactosidase A on concentration (A) and logc (B) of compound 42.

A

B

Figure S35 Dependence of percentage of inhibition of α-galactosidase A on concentration (A) and logc (B) of compound 53.

A

B

87

Figure S36 Dependence of percentage of inhibition of α-galactosidase A on concentration (A) and loge (B) of compound 87 .

A

B

88

Figure S37 Dependence of percentage of inhibition of α-galactosidase A on concentration (A) and logc (B) of compound 88 .

89

Figure S38 Dependence of percentage of inhibition of α-galactosidase A on concentration of compound 89.

Figure S39 Dependence of percentage of inhibition of α-galactosidase A on concentration of compound 93.

Figure S40 Dependence of percentage of inhibition of α-galactosidase A on concentration of compound 94.

A

B

104

Figure S41 Dependence of percentage of inhibition of α-galactosidase A on concentration (A) and logc (B) of compound 104.

6. Virology

Figure S42 Antiviral activities and cell viabilities for all samples.

The numeric data for the antiviral assays can be downloaded as .xlsx file at the address:
https://www.chem.bg.ac.rs/~mario/SmartRepPVP/
The numeric data for the cytotoxicity assays can be downloaded as .xlsx file at the address:
https://www.chem.bg.ac.rs/~mario/SmartRepCyt/

7. References

${ }^{1}$ L. Yu, K. Ikeda, A. Kato, I. Adachi, G. Godin, P. Compain, O. Martin, N. Asano, α-1-C-Octyl-1-deoxynojirimycin as a pharmacological chaperone for Gaucher disease, Bioorg. Med. Chem. 2006, 14, 7736. doi: 10.1016/j.bmc.2006.08.003.
${ }^{2}$ N. Asano, H. Kizu, K. Oseki, E. Tomioka, K. Matsui, M. Okamoto, M. Baba, N-Alkylated Nitrogen-in-the-Ring Sugars: Conformational Basis of Inhibition of Glycosidases and HIV-1 Replication, J. Med. Chem. 1995, 38, 2349. doi: 10.1021/im00013a012.
${ }^{3}$ J. Marjanovic Trajkovic, V. Milanovic, Z. Ferjancic, R. Saicic, On the Asymmetric Induction in Proline-Catalyzed Aldol Reactions: Reagent-Controlled Addition Reactions of 2,2-Dimethyl-1,3-dioxane-5-one to Acyclic Chiral α-Branched Aldehydes, Eur. J. Org. Chem. 2017, 6146. doi: 10.1002/ejoc. 201701073.
${ }^{4}$ N. Asano, S. Ishii, H. Kizu, K. Ikeda, K. Yasuda, A. Kato, O. R. Martin, J.-Q. Fan, In vitro inhibition and intracellular enhancement of lysosomal alpha-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives, Eur. J. Biochem. 2000, 267, 4179. doi: 10.1046/j.1432-1327.2000.01457.x.
5 C. Boucheron, P. Compain, O. R. Martin, A stereodivergent approach to 1-deoxynojirimycin, 1deoxygalactonojirimycin and 1-deoxymannojirimycin derivatives, Tetrahedron. Lett. 2006, 47, 18, 3081. doi: 10.1016/i.tetlet.2006.02.157.
${ }^{6}$ J. Marjanovic Trajkovic, V. Milanovic, Z. Ferjancic, R. N. Saicic, Organocatalyzed synthesis of (-)-4-epi-fagomine and the corresponding pipecolic acids, Tetrahedron. 2015, 71, 6784. doi: 10.1016/j.tet.2015.07.036.
${ }^{7}$ R. Koyama, Y. Kano, K. Kikushima, A. Mizutani, Y. Soeda, K. Miura, T. Hirano, T. Nishio, W. Hakamata, A novel Golgi mannosidase inhibitor: Molecular design, synthesis, enzyme inhibition, and inhibition of spheroid formation, Bioorg. Med. Chem. 2020, 28, 115492. doi: 10.1016/j.bmc.2020.115492.

8. Copies of NMR spectra for selected compounds

(ordered by increasing compound numbers)

	Parameter	Value
1	Title	CARBON_01
2	Solvent	d20
3	Temperature	26.0
4	Number of Scans	700
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	13 C

	Parameter	Value
1	Title	PROTON_01
2	Solvent	d20
3	Temperature	27.0
4	Number of Scans	32
5	Receiver Gain	46
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	2.2807
9	Spectrometer Frequency 399.73	
10	Nucleus	$1 H$

2

	Parameter	Value
1	Title	CARBON_01
2	Solvent	d20
3	Temperature	25.0
4	Number of Scans	700
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	13 C

	Parameter	Value
1	Title	PROTON_01
2	Solvent	cd3od
3	Temperature	25.0
4	Number of Scans	16
5	Receiver Gain	40
6	Relaxation Delay	2.0000
7	Pulse Width	0.0000
8	Acquisition Time	2.2807
9	Spectrometer Frequency 399.73	
10	Nucleus	1 H

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cd3od
3	Temperature	25.0
4	Number of Scans	512
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	$13 C$

1	1	,	1	1	1	,	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

	Parameter	Value
1	Title	CARBON_01
2	Solvent	d20
3	Temperature	25.0
4	Number of Scans	3000
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	$13 C$

1	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

-

\[

\]

Parameter	Value
1 Title	AGF-N_21557.10.fid
2 Solvent	D2O
3 Temperature	297.8
4 Number of Scans	237
5 Receiver Gain	1440.0
6 Pulse Width	15.2500
7 7cquisition Time	0.5505
8 Spectrometer Frequency 125.80	
9 Nucleus	$13 C$

Parameter	Value
1 Title	CARBON_01
2 Solvent	d2o
3 Temperature	25.0
4 Number of Scans	512
5 Receiver Gain	30
6 Pulse Width	4.6125
7 Acquisition Time	1.3107
8 Spectrometer Frequency	100.52
9 Nucleus	13C

Parameter	Value
1 Title	PROTON_01
2 Solvent	d2o
3 Temperature	25.0
4 Number of Scans	16
5 Receiver Gain	34
6 Pulse Width	4.1000
7 Acquisition Time	2.2807
8 Spectrometer Frequency 399.73	
9 9 Nucleus	1 H

Parameter	Value
1 Title	CARBON_01
2 Solvent	d2o
3 Temperature	25.0
4 Number of Scans	700
5 Receiver Gain	30
6 Pulse Width	4.6125
7 Acquisition Time	1.3107
8 Spectrometer Frequency	100.52
9 Nucleus	13 C

	Parameter	Value
	Title	MVT1082 sve 7892
2	Solvent	MeOD
3	Temperature	297.9
4	Number of Scans	16
5	Receiver Gain	81
6	Relaxation Delay	2.0000
7	Pulse Width	8.3000
8	Acquisition Time	1.6384
9	Spectrometer Frequency	500.26
10	Nucleus	$1 H$

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cdcl3
3	Temperature	25.0
4	Number of Scans	512
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	$13 C$

	Parameter	Value
1	Title	PROTON_01 cd3od
2	Solvent	25.0
3	Temperature	16
4	Number of Scans	40
5	Receiver Gain	2.0000
6	Relaxation Delay	0.0000
7	Pulse Width	2.5559
8	Acquisition Time	
9	Spectrometer Frequency	399.73
10	Nucleus	$1 H$

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cd3od
3	Temperature	25.0
4	Number of Scans	700
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	13 C

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cd3od
3	Temperature	25.0
4	Number of Scans	700
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	13 C

	Parameter	Value
1	Title	PROTON_01
2	Solvent	cdcl3
3	Temperature	25.0
4	Number of Scans	16
5	Receiver Gain	28
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	2.2807
9	Spectrometer Frequency 399.73	
10	Nucleus	1 H

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cdcl3
3	Temperature	25.0
4	Number of Scans	512
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	13 C

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	'/
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cd3od
3	Temperature	25.0
4	Number of Scans	512
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	13 C

85

Parameter	Value
1 Title	CARBON_01
2Solvent	cdcl3
3 Temperature	26.0
4Number of Scans	512
5Receiver Gain	30
6Pulse Width	4.6125
7 7Acquisition Time	1.3107
8Spectrometer Frequency 100.52	
9Nucleus	$13 C$

	Parameter	Value
1	Title	PROTON_01
2	Solvent	cd3od
3	Temperature	25.0
4	Number of Scans	16
5	Receiver Gain	40
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	2.5559
9	Spectrometer Frequency 399.73	
10	Nucleus	1 H

87

	Parameter	Value
1	Title	CARBON_01
2	colvent	cd3od
3	Temperature	25.0
4	Number of Scans	700
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	13 C

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

	\cdots 낭
	べウ
1｜｜｜｜	$\rightarrow 1$

88

	Parameter	Value
1	Title	C88 AK 28
2	Solvent	MeOD
3	Temperature	298.0
4	Number of Scans	738
5	Receiver Gain	575
6	Relaxation Delay	2.0000
7	Pulse Width	15.2500
8	Acquisition Time	0.5505
9	Spectrometer Frequency	125.79
10	Nucleus	$13 C$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

89

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cd3od
3	Temperature	25.0
4	Number of Scans	700
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	13 C

	Parameter	Value
1	Title	PROTON_01
2	Solvent	cd3od
3	Temperature	25.0
4	Number of Scans	16
5	Receiver Gain	38
6	Relaxation Delay	2.0000
7	Pulse Width	0.0000
8	Acquisition Time	2.2807
9	Spectrometer Frequency	399.73
10	Nucleus	1 H

	Parameter	Value
1	Title	PROTON_01
2	Solvent	cd3od 3
Temperature	25.0	
4	Number of Scans	16
5	Receiver Gain	38
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	2.2807
9	Spectrometer Frequency 399.73	
10	Nucleus	1 H

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cd3od
3	Temperature	25.0
4	Number of Scans	700
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	13 C

		Parameter
1	Title	Value
2	Solvent	PROTON_01
3	Temperature	25.0
4	Number of Scans	16
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	2.5559
9	Spectrometer Frequency 399.73	
10	Nucleus	1 H

95

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cdcl3
3	Temperature	25.0
4	Number of Scans	256
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	$13 C$

oi

,	1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	,	1	1
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

96

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cdcl3
3	Temperature	25.0
4	Number of Scans	256
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	$13 C$

,	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

103

	Parameter	Value
1	Title	PROTON_01
2	Solvent	cdcl3
3	Temperature	27.0
4	Number of Scans	16
5	Receiver Gain	42
6	Relaxation Delay	2.0000
7	Pulse Width	0.0000
8	Acquisition Time	2.5559
9	Spectrometer Frequency	399.73
10	Nucleus	$1 H$

$\stackrel{n}{n}$
M

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cdcl3
3	Temperature	27.0
4	Number of Scans	700
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	$13 C$

?
104

	Parameter	Value
1	Title	CARBON_01
2	Solvent	d20
3	Temperature	27.0
4	Number of Scans	700
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	$13 C$

[^0]

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cdcl3
3	Temperature	25.0
4	Number of Scans	700
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	$13 C$

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cdcl3
3	Temperature	26.0
4	Number of Scans	400
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	$13 C$

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cdcl3
3	Temperature	25.0
4	Number of Scans	700
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	13 C

		Parameter
1	Title	Value
2	Solvent	PROTON_01
3	Temperature	25.0
4	Number of Scans	16
5	Receiver Gain	28
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	2.2807
9	Spectrometer Frequency 399.73	
10	Nucleus	1 H

- 웅
115

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cdcl3
3	Temperature	25.0
4	Number of Scans	512
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	$13 C$

[^1]

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cdcl3
3	Temperature	25.0
4	Number of Scans	512
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	13 C

	Parameter	Value
1	Title	PROTON_01
2	Solvent	cdcl3
3	Temperature	25.0
4	Number of Scans	16
5	Receiver Gain	32
	Relaxation Delay	2.0000
7	Pulse Width	0.0000
	Acquisition Time	2.2807
	Spectrometer Frequency	399.73
	Nucleus	1 H

118

118

	Parameter	Value
1	Title	CARBON_01
2	Solvent	cdcl3
3	Temperature	25.0
4	Number of Scans	512
5	Receiver Gain	30
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	1.3107
9	Spectrometer Frequency	100.52
10	Nucleus	$13 C$

응ুুুপᄋ

	Parameter	Value
1	Title	PROTON_01
2	Solvent	cd3od
3	Temperature	25.0
4	Number of Scans	16
5	Receiver Gain	32
6	Relaxation Delay	1.0000
7	Pulse Width	0.0000
8	Acquisition Time	2.2807
9	Spectrometer Frequency 399.73	
10	Nucleus	1 H

${ }^{4}$	T					T			
N	®					$\stackrel{\infty}{\circ}$			
		1					0.5		-
4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

$\stackrel{+}{i}$
친
119

	Parameter	Value CARBON_01
1	Title	cd3od 2
	Solvent	25.0
3	Temperature	512
4	Number of Scans	30
5	Receiver Gain	1.0000
6	Relaxation Delay	0.0000
7	Pulse Width	1.3107
8	Acquisition Time	100.52
9	Spectrometer Frequency	
10	Nucleus	$13 C$

	1	1	T	T	,				T		1	1	1	1	1		T	1		1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

[^0]: $220 \quad 210$ $00190 \quad 180$ $80 \quad 17$

[^1]:

